Citation: MEI Su-Juan, WU Jun-Jie, LU Shuang-Long, CAO Xue-Qin, GU Hong-Wei, TANG Ming-Hua. Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2298-2304. doi: 10.11862/CJIC.2015.317 shu

Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities

  • Corresponding author: GU Hong-Wei, 
  • Received Date: 19 May 2015
    Available Online: 3 October 2015

    Fund Project: 国家自然科学基金(No.21373006) (No.21373006)

  • Concave dendritic PtCu bimetallic nanocatalysts (PtCu NCDs) was prepared by one-step method in a Teflon-lined stainless steel autoclave with o-phenylenediamine as surface active agent. In the reaction system, o-phenylenediamine plays an important role in initiating, promoting and guiding replacement reaction. The PtCu NCDs exhibited exceptionally high activity and strong poisoning resistance in methanol oxidation reaction (MOR). The mass activity of PtCu NCDs (0.53 A·mg-1 Pt) was 2.04 times higher than that of the commercial Pt/C catalysts (0.26 A·mg-1 Pt) in MOR. The specific activity of PtCu NCDs (1.07 mA·cm-2) was 1.95 times higher than that of the commercial Pt/C catalysts (0.55 mA·cm-2). Moreover, PtCu NCDs (2.76) showed a higher ratio of If/Ib than the commercial Pt/C catalysts (1.02). The enhanced catalytic activity could be owed to the unique concave dendritic morphology of the bimetallic nanoparticles.
  • 加载中
    1. [1]

      [1] Chen J, Lim B, Lee E P, et al. Nano Today, 2009,4(1):81-95

    2. [2]

      [2] Peng Z, Yang H. Nano Today, 2009,4(2):143-164

    3. [3]

      [3] Lim B, Jiang M, Camargo P H C, et al. Science, 2009,324 (5932):1302-1305

    4. [4]

      [4] Larsson E M, Alegret J, Kll M, et al. Nano Lett., 2007,7(5): 1256-1263

    5. [5]

      [5] Alivisatos P. Nat. Biotechnol., 2004,22(1):47-52

    6. [6]

      [6] Huang X, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120

    7. [7]

      [7] Mulvihill M J, Ling X Y, Henzie J, et al. J. Am. Chem. Soc., 2009,132(1):268-274

    8. [8]

      [8] Zhou K, Li Y. Angew. Chem., Int. Ed., 2012,51(3):602-613

    9. [9]

      [9] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316(5825): 732-735

    10. [10]

      [10] Guo S, Zhang S, Sun X, et al. J. Am. Chem. Soc., 2011,133 (39):15354-15357

    11. [11]

      [11] Guo S, Dong S, Wang E. ACS Nano, 2009,4(1):547-555

    12. [12]

      [12] Wu H, Li H, Zhai Y, et al. Adv. Mater., 2012,24(12):1594- 1597

    13. [13]

      [13] Chen A. Chem. Rev., 2010,110(6):3767-3804

    14. [14]

      [14] Yoo S J, Jeon T Y, Kim K S, et al. Phys. Chem. Chem. Phys., 2010,12(46):15240-15246

    15. [15]

      [15] Yin A X, Min X Q, Zhu W, et al. Chem. Eur. J., 2012,18 (3):777-782

    16. [16]

      [16] Kugai J, Moriya T, Seino S, et al. Int. J. Hydrogen Energy, 2012,37(6):4787-4797

    17. [17]

      [17] Huang X, Zhao Z, Fan J, et al. J. Am. Chem. Soc., 2011, 133(13):4718-4721

    18. [18]

      [18] Stamenkovic V R, Fowler B, Mun B S, et al. Science, 2007, 315(5811):493-497

    19. [19]

      [19] Stamenkovic V R, Mun B S, Arenz M, et al. Nat. Mater., 2007,6(3):241-247

    20. [20]

      [20] Strasser P, Koh S, Anniyev T, et al. Nat. Chem., 2010,2(6): 454-460

    21. [21]

      [21] Liu Y, Li D, Stamenkovic V R, et al. ACS Catal., 2011,1 (12):1719-1723

    22. [22]

      [22] Kang Y, Pyo J B, Ye X, et al. ACS Nano, 2012,6(6):5642- 5647

    23. [23]

      [23] Xia B Y, Wu H B, Wang X, et al. J. Am. Chem. Soc., 2012, 134(34):13934-13937

    24. [24]

      [24] Gasteiger H A, Markovic N M. Science, 2009,324(5923):48- 49

    25. [25]

      [25] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal., B, 2005,56(1):9-35

    26. [26]

      [26] Stephens I E L. Angew. Chem., Int. Ed., 2011,50(7):1476- 1477

    27. [27]

      [27] Greeley J, Stephens I E L. Nat. Chem., 2009,1(7):552-556

    28. [28]

      [28] Zeng J, Zhang Q, Chen J, et al. Nano Lett., 2009,10(1):30-35

    29. [29]

      [29] Yamauchi Y, Sugiyama A, Morimoto R, et al. Angew. Chem., Int. Ed., 2008,47(29):5371-5373

    30. [30]

      [30] Prevo B G, Esakoff S A, Mikhailovsky A, et al. Small, 2008, 4(8):1183-1195

    31. [31]

      [31] Yin Y, Erdonmez C, Aloni S, et al. J. Am. Chem. Soc., 2006, 128(39):12671-12673

    32. [32]

      [32] Schwartzberg A M, Olson T Y, Talley C E, et al. J. Phys. Chem. B, 2006,110(40):19935-19944

    33. [33]

      [33] Wu Y, Wang D, Niu Z, et al. Angew. Chem., Int. Ed., 2012, 51(50):12524-12528

    34. [34]

      [34] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939

    35. [35]

      [35] Xu D, Liu Z, Yang H, et al. Angew. Chem., Int. Ed., 2009, 48(23):4217-4221

    36. [36]

      [36] Koh S, Strasser P. J. Am. Chem. Soc., 2007,129(42):12624- 12625

    37. [37]

      [37] Kibsgaard J, Gorlin Y, Chen Z, et al. J. Am. Chem. Soc., 2012,134(18):7758-7765

    38. [38]

      [38] Liu H, Nosheen F, Wang X. Chem. Soc. Rev., 2015,44(10): 3056-3078

    39. [39]

      [39] Tseng Y C, Chen H S, Liu C W, et al. J. Mater. Chem. A, 2014,2(12):4270-4275

    40. [40]

      [40] Shiraishi Y, Sakamoto H, Sugano Y, et al. ACS Nano, 2013, 7(10):9287-9297

    41. [41]

      [41] Xu C, Liu Y, Wang J, et al. J. Power Sources, 2012,199:124 -131

    42. [42]

      [42] Zhang Z, Yang Y, Wosheen F, et al. Small, 2013,9(18):3063 -3069

    43. [43]

      [43] Jin R C, Cao Y W, Mirkin C, et al. Science, 2001,294(5548): 1901-1903

    44. [44]

      [44] Mohanty A, Garg N, Jin R C. Angew. Chem. Int. Ed., 2010, 49(29):4962-4966

    45. [45]

      [45] Lim B, Lu X, Jiang M, et al. Nano Lett., 2008,8(11):4043- 4047

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(231)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return