Citation:
MEI Su-Juan, WU Jun-Jie, LU Shuang-Long, CAO Xue-Qin, GU Hong-Wei, TANG Ming-Hua. Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities[J]. Chinese Journal of Inorganic Chemistry,
;2015, (12): 2298-2304.
doi:
10.11862/CJIC.2015.317
-
Concave dendritic PtCu bimetallic nanocatalysts (PtCu NCDs) was prepared by one-step method in a Teflon-lined stainless steel autoclave with o-phenylenediamine as surface active agent. In the reaction system, o-phenylenediamine plays an important role in initiating, promoting and guiding replacement reaction. The PtCu NCDs exhibited exceptionally high activity and strong poisoning resistance in methanol oxidation reaction (MOR). The mass activity of PtCu NCDs (0.53 A·mg-1 Pt) was 2.04 times higher than that of the commercial Pt/C catalysts (0.26 A·mg-1 Pt) in MOR. The specific activity of PtCu NCDs (1.07 mA·cm-2) was 1.95 times higher than that of the commercial Pt/C catalysts (0.55 mA·cm-2). Moreover, PtCu NCDs (2.76) showed a higher ratio of If/Ib than the commercial Pt/C catalysts (1.02). The enhanced catalytic activity could be owed to the unique concave dendritic morphology of the bimetallic nanoparticles.
-
-
-
[1]
[1] Chen J, Lim B, Lee E P, et al. Nano Today, 2009,4(1):81-95
-
[2]
[2] Peng Z, Yang H. Nano Today, 2009,4(2):143-164
-
[3]
[3] Lim B, Jiang M, Camargo P H C, et al. Science, 2009,324 (5932):1302-1305
-
[4]
[4] Larsson E M, Alegret J, Kll M, et al. Nano Lett., 2007,7(5): 1256-1263
-
[5]
[5] Alivisatos P. Nat. Biotechnol., 2004,22(1):47-52
-
[6]
[6] Huang X, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120
-
[7]
[7] Mulvihill M J, Ling X Y, Henzie J, et al. J. Am. Chem. Soc., 2009,132(1):268-274
-
[8]
[8] Zhou K, Li Y. Angew. Chem., Int. Ed., 2012,51(3):602-613
-
[9]
[9] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316(5825): 732-735
-
[10]
[10] Guo S, Zhang S, Sun X, et al. J. Am. Chem. Soc., 2011,133 (39):15354-15357
-
[11]
[11] Guo S, Dong S, Wang E. ACS Nano, 2009,4(1):547-555
-
[12]
[12] Wu H, Li H, Zhai Y, et al. Adv. Mater., 2012,24(12):1594- 1597
-
[13]
[13] Chen A. Chem. Rev., 2010,110(6):3767-3804
-
[14]
[14] Yoo S J, Jeon T Y, Kim K S, et al. Phys. Chem. Chem. Phys., 2010,12(46):15240-15246
-
[15]
[15] Yin A X, Min X Q, Zhu W, et al. Chem. Eur. J., 2012,18 (3):777-782
-
[16]
[16] Kugai J, Moriya T, Seino S, et al. Int. J. Hydrogen Energy, 2012,37(6):4787-4797
-
[17]
[17] Huang X, Zhao Z, Fan J, et al. J. Am. Chem. Soc., 2011, 133(13):4718-4721
-
[18]
[18] Stamenkovic V R, Fowler B, Mun B S, et al. Science, 2007, 315(5811):493-497
-
[19]
[19] Stamenkovic V R, Mun B S, Arenz M, et al. Nat. Mater., 2007,6(3):241-247
-
[20]
[20] Strasser P, Koh S, Anniyev T, et al. Nat. Chem., 2010,2(6): 454-460
-
[21]
[21] Liu Y, Li D, Stamenkovic V R, et al. ACS Catal., 2011,1 (12):1719-1723
-
[22]
[22] Kang Y, Pyo J B, Ye X, et al. ACS Nano, 2012,6(6):5642- 5647
-
[23]
[23] Xia B Y, Wu H B, Wang X, et al. J. Am. Chem. Soc., 2012, 134(34):13934-13937
-
[24]
[24] Gasteiger H A, Markovic N M. Science, 2009,324(5923):48- 49
-
[25]
[25] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal., B, 2005,56(1):9-35
-
[26]
[26] Stephens I E L. Angew. Chem., Int. Ed., 2011,50(7):1476- 1477
-
[27]
[27] Greeley J, Stephens I E L. Nat. Chem., 2009,1(7):552-556
-
[28]
[28] Zeng J, Zhang Q, Chen J, et al. Nano Lett., 2009,10(1):30-35
-
[29]
[29] Yamauchi Y, Sugiyama A, Morimoto R, et al. Angew. Chem., Int. Ed., 2008,47(29):5371-5373
-
[30]
[30] Prevo B G, Esakoff S A, Mikhailovsky A, et al. Small, 2008, 4(8):1183-1195
-
[31]
[31] Yin Y, Erdonmez C, Aloni S, et al. J. Am. Chem. Soc., 2006, 128(39):12671-12673
-
[32]
[32] Schwartzberg A M, Olson T Y, Talley C E, et al. J. Phys. Chem. B, 2006,110(40):19935-19944
-
[33]
[33] Wu Y, Wang D, Niu Z, et al. Angew. Chem., Int. Ed., 2012, 51(50):12524-12528
-
[34]
[34] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939
-
[35]
[35] Xu D, Liu Z, Yang H, et al. Angew. Chem., Int. Ed., 2009, 48(23):4217-4221
-
[36]
[36] Koh S, Strasser P. J. Am. Chem. Soc., 2007,129(42):12624- 12625
-
[37]
[37] Kibsgaard J, Gorlin Y, Chen Z, et al. J. Am. Chem. Soc., 2012,134(18):7758-7765
-
[38]
[38] Liu H, Nosheen F, Wang X. Chem. Soc. Rev., 2015,44(10): 3056-3078
-
[39]
[39] Tseng Y C, Chen H S, Liu C W, et al. J. Mater. Chem. A, 2014,2(12):4270-4275
-
[40]
[40] Shiraishi Y, Sakamoto H, Sugano Y, et al. ACS Nano, 2013, 7(10):9287-9297
-
[41]
[41] Xu C, Liu Y, Wang J, et al. J. Power Sources, 2012,199:124 -131
-
[42]
[42] Zhang Z, Yang Y, Wosheen F, et al. Small, 2013,9(18):3063 -3069
-
[43]
[43] Jin R C, Cao Y W, Mirkin C, et al. Science, 2001,294(5548): 1901-1903
-
[44]
[44] Mohanty A, Garg N, Jin R C. Angew. Chem. Int. Ed., 2010, 49(29):4962-4966
-
[45]
[45] Lim B, Lu X, Jiang M, et al. Nano Lett., 2008,8(11):4043- 4047
-
[1]
-
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[5]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[8]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[11]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[12]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[15]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[16]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(231)
- HTML views(21)