Citation: ZENG Han, YANG Yang, ZHAO Shu-Xian. Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2305-2314. doi: 10.11862/CJIC.2015.316 shu

Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes

  • Corresponding author: ZENG Han, 
  • Received Date: 30 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(No.21363024) (No.21363024)新疆师范大学博士科研启动基金(No.XJNUBS1228) (No.XJNUBS1228)新疆维吾尔自治区2013年度高校科研计划青年 教师培育项目(No.XJEDU2013S29) (No.XJEDU2013S29)新疆师范大学研究生科技创新项目(No.XSY201502009)资助。 (No.XSY201502009)

  • Synthesized 4-mercaptobenzoic acid functionalized nano-gold particles and poly(vinylpyridine) overlapped nanogold-particles, were used as enzyme carriers to prepare two kinds of novel enzyme-based electrodes, respectively. Two prototypes of enzyme-based fuel cells were fabricated on the basis of previously described electrodes. Morphology of matrix with immobilized enzymes, influences of interaction between enzyme molecules and carriers on spectrometric characteristics of electrode surface anchored enzyme molecules, direct electron transfer dynamics between enzyme active centers and electrodes and catalytic function in substrate involved reaction, were investigated by the means of electrochemical method together with such techniques as ultra-violet/visible spectrometry(UV-Vis) and transmission electron microscope(TEM). Energy out-put performances for two kinds of fabricated enzyme-based fuel cells were evaluated and compared systematically. Results from test indicated 4-mercaptobenzoic acid surface-tailored nano-gold particles with enzymes modified electrodes displayed direct electron transfer between enzyme active sites and electrode, revealing favorable catalytic effect on glucose electro-oxidation and oxygen electro-reduction(catalytic reaction onset potential for glucose oxidationn and oxygen reduction: -0.03 and 0.96 V, turn-over frequency of substrates: 1.3 and 0.5 s-1, respectively). Reproducibility, long-term usability, acid/base endurance and thermal stability in catalytic function of previously mentioned electrode were preferable. Catalytic effect in substrate-related reaction of enzyme-based electrode increased with the thickness of self-assembled immobilized enzyme layers until approaching to maximal catalytic current. Test on performance of fuel cell showed open circuit voltage(OCV, 0.88 V), maximal out-put energy density(864.0 μW·cm-2) and excellent long-term stability(retaining above 80% of optimal energy out-put after storage for 3 weeks).
  • 加载中
    1. [1]

      [1] Coman V, Vaz-Dominguez C, Ludwig R, et al. Phys. Chem. Chem. Phys., 2008,10(40):6093-6096

    2. [2]

      [2] Willner I, Yan Y M, Willner B, et al. Fuel Cells, 2009,9(1): 7-24

    3. [3]

      [3] Ivanov I, Vidakovic-Koch T, Sundmacher K. Energies, 2010, 3(4):803-846

    4. [4]

      [4] Stolarczyk K, Nazaruk E, Rogalski J, et al. Electrochem. Commun., 2007,9(1):115-118

    5. [5]

      [5] Wei W, Li P P, Li Y, et al. Electrochem. Commun., 2012, 22:181-184

    6. [6]

      [6] Lesniewski A, Niedziolka-Jonsson J, Rizzi C, et al. Electro- chem. Commun., 2010,12(1):83-85

    7. [7]

      [7] Arrocha A A, Cano-Castillo U, Aguila S A, et al. Biosens. Bioelectron., 2014,61:569-574

    8. [8]

      [8] Katz E, Riklin A, Heleg-Shabtai V, et al. Anal. Chim. Acta, 1999,385(1/2/3):45-58

    9. [9]

      [9] Zelechowska K, Stolarczyk K, Lyp D, et al. Biocybern. Biomed. Eng., 2013,33:235-245

    10. [10]

      [10] Umasankar Y, Brooks D B, Brown B, et al. Adv. Energy Mater., 2014,4(6):1-9

    11. [11]

      [11] Kizling M, Stolarczyk K, Kiat J S S, et al. Electrochem. Commun., 2015,50:55-59

    12. [12]

      [12] Deng M F, Zhao H, Zhang S P, et al. J. Mol. Catal. B: Enzym., 2015,112:15-24

    13. [13]

      [13] Blandford C F, Heath R S, Armstrong F A. Chem. Commun., 2007,43:1710-1712

    14. [14]

      [14] Pang H L, Liu J, Hu D, et al. Electrochim. Acta, 2010,55 (22):6611-6616

    15. [15]

      [15] Qiu H J, Xu C X; Huang X R, et al. J. Phys. Chem. C, 2008,112(38):14781-14785

    16. [16]

      [16] Lioubashevski O, Chegel V I, Patolsky F, et al. J. Am. Chem. Soc., 2004,126(22):7133-7143

    17. [17]

      [17] Pita M, Shleev S, Ruzgas T, et al. Electrochem. Commun., 2006,8(5):747-753

    18. [18]

      [18] Thorum M S, Anderson C A, Hatch J J, et al. J. Phys. Chem. Lett., 2010,1(15):2251-2254

    19. [19]

      [19] Rahman M A, Noh H B, Shim Y B. Anal. Chem., 2008,80 (21):8020-8027

    20. [20]

      [20] Zayats M, Katz E, Baron R, et al. J. Am. Chem. Soc., 2005, 127(35):12400-12406

    21. [21]

      [21] Hao E C, Lian T Q. Chem. Mater., 2000,12(11):3392-3396

    22. [22]

      [22] Szamocki R, Flexer V, Levin L, et al. Electrochim. Acta, 2009,54(7):1970-1977

    23. [23]

      [23] HUANG Jun(黄俊), ZHOU Ju-Ying(周菊英), XIAO Hai- Yan(肖海燕), et al. Acta Chim. Sinica(化学学报), 2005,63 (14):1343-1347

    24. [24]

      [24] Zhao H Y, Zhou H M, Zhang J X, et al. Biosens. Bioelectron., 2009,25(2):463-468

    25. [25]

      [25] Shleev S, Christenson A, Serezhenkov V, et al. Biochem. J., 2005,385:745-754

    26. [26]

      [26] Liu Y, Wang M K, Zhao F, et al. Biosens. Bioelectron., 2005,21(6):984-988

    27. [27]

      [27] Palmer A E, Randall D W, Xu F, et al. J. Am. Chem. Soc., 1999,121(30):7138-7149

    28. [28]

      [28] Dimcheva N, Horozova E. Biochemistry, 2013,90:1-7

    29. [29]

      [29] Zeng H, Tang Z Q, Liao L W, et al. Chin. J. Chem. Phys., 2011,12(36):10888-10895

    30. [30]

      [30] Tsujimura S, Kamitaka Y, Kano K, et al. Fuel Cells, 2007, 7(6):463-469

    31. [31]

      [31] Stolarczyk K, Sepelowska M, Lyp D, et al. Bioelectrochemistry, 2012,87:154-163

    32. [32]

      [32] Jiang D S, Long S Y, Huang J, et al. Biochem. Eng. J., 2005, 25(1):15-23

    33. [33]

      [33] Clot S, Gutierrez-Sanchez C, Shleev S, et al. Electrochem. Commun., 2012,18:37-40

    34. [34]

      [34] Mano N, Kim H H, Zhang Y C, et al. J. Am. Chem. Soc., 2002,124(22):6480-6486

    35. [35]

      [35] Liu Y, Qu X H, Guo H W, et al. Biosens. Bioelectron., 2006,21(12):2195-2201

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(0)
  • Abstract views(575)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return