Citation: ZENG Han, YANG Yang, ZHAO Shu-Xian. Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2305-2314. doi: 10.11862/CJIC.2015.316 shu

Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes

  • Corresponding author: ZENG Han, 
  • Received Date: 30 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(No.21363024) (No.21363024)新疆师范大学博士科研启动基金(No.XJNUBS1228) (No.XJNUBS1228)新疆维吾尔自治区2013年度高校科研计划青年 教师培育项目(No.XJEDU2013S29) (No.XJEDU2013S29)新疆师范大学研究生科技创新项目(No.XSY201502009)资助。 (No.XSY201502009)

  • Synthesized 4-mercaptobenzoic acid functionalized nano-gold particles and poly(vinylpyridine) overlapped nanogold-particles, were used as enzyme carriers to prepare two kinds of novel enzyme-based electrodes, respectively. Two prototypes of enzyme-based fuel cells were fabricated on the basis of previously described electrodes. Morphology of matrix with immobilized enzymes, influences of interaction between enzyme molecules and carriers on spectrometric characteristics of electrode surface anchored enzyme molecules, direct electron transfer dynamics between enzyme active centers and electrodes and catalytic function in substrate involved reaction, were investigated by the means of electrochemical method together with such techniques as ultra-violet/visible spectrometry(UV-Vis) and transmission electron microscope(TEM). Energy out-put performances for two kinds of fabricated enzyme-based fuel cells were evaluated and compared systematically. Results from test indicated 4-mercaptobenzoic acid surface-tailored nano-gold particles with enzymes modified electrodes displayed direct electron transfer between enzyme active sites and electrode, revealing favorable catalytic effect on glucose electro-oxidation and oxygen electro-reduction(catalytic reaction onset potential for glucose oxidationn and oxygen reduction: -0.03 and 0.96 V, turn-over frequency of substrates: 1.3 and 0.5 s-1, respectively). Reproducibility, long-term usability, acid/base endurance and thermal stability in catalytic function of previously mentioned electrode were preferable. Catalytic effect in substrate-related reaction of enzyme-based electrode increased with the thickness of self-assembled immobilized enzyme layers until approaching to maximal catalytic current. Test on performance of fuel cell showed open circuit voltage(OCV, 0.88 V), maximal out-put energy density(864.0 μW·cm-2) and excellent long-term stability(retaining above 80% of optimal energy out-put after storage for 3 weeks).
  • 加载中
    1. [1]

      [1] Coman V, Vaz-Dominguez C, Ludwig R, et al. Phys. Chem. Chem. Phys., 2008,10(40):6093-6096

    2. [2]

      [2] Willner I, Yan Y M, Willner B, et al. Fuel Cells, 2009,9(1): 7-24

    3. [3]

      [3] Ivanov I, Vidakovic-Koch T, Sundmacher K. Energies, 2010, 3(4):803-846

    4. [4]

      [4] Stolarczyk K, Nazaruk E, Rogalski J, et al. Electrochem. Commun., 2007,9(1):115-118

    5. [5]

      [5] Wei W, Li P P, Li Y, et al. Electrochem. Commun., 2012, 22:181-184

    6. [6]

      [6] Lesniewski A, Niedziolka-Jonsson J, Rizzi C, et al. Electro- chem. Commun., 2010,12(1):83-85

    7. [7]

      [7] Arrocha A A, Cano-Castillo U, Aguila S A, et al. Biosens. Bioelectron., 2014,61:569-574

    8. [8]

      [8] Katz E, Riklin A, Heleg-Shabtai V, et al. Anal. Chim. Acta, 1999,385(1/2/3):45-58

    9. [9]

      [9] Zelechowska K, Stolarczyk K, Lyp D, et al. Biocybern. Biomed. Eng., 2013,33:235-245

    10. [10]

      [10] Umasankar Y, Brooks D B, Brown B, et al. Adv. Energy Mater., 2014,4(6):1-9

    11. [11]

      [11] Kizling M, Stolarczyk K, Kiat J S S, et al. Electrochem. Commun., 2015,50:55-59

    12. [12]

      [12] Deng M F, Zhao H, Zhang S P, et al. J. Mol. Catal. B: Enzym., 2015,112:15-24

    13. [13]

      [13] Blandford C F, Heath R S, Armstrong F A. Chem. Commun., 2007,43:1710-1712

    14. [14]

      [14] Pang H L, Liu J, Hu D, et al. Electrochim. Acta, 2010,55 (22):6611-6616

    15. [15]

      [15] Qiu H J, Xu C X; Huang X R, et al. J. Phys. Chem. C, 2008,112(38):14781-14785

    16. [16]

      [16] Lioubashevski O, Chegel V I, Patolsky F, et al. J. Am. Chem. Soc., 2004,126(22):7133-7143

    17. [17]

      [17] Pita M, Shleev S, Ruzgas T, et al. Electrochem. Commun., 2006,8(5):747-753

    18. [18]

      [18] Thorum M S, Anderson C A, Hatch J J, et al. J. Phys. Chem. Lett., 2010,1(15):2251-2254

    19. [19]

      [19] Rahman M A, Noh H B, Shim Y B. Anal. Chem., 2008,80 (21):8020-8027

    20. [20]

      [20] Zayats M, Katz E, Baron R, et al. J. Am. Chem. Soc., 2005, 127(35):12400-12406

    21. [21]

      [21] Hao E C, Lian T Q. Chem. Mater., 2000,12(11):3392-3396

    22. [22]

      [22] Szamocki R, Flexer V, Levin L, et al. Electrochim. Acta, 2009,54(7):1970-1977

    23. [23]

      [23] HUANG Jun(黄俊), ZHOU Ju-Ying(周菊英), XIAO Hai- Yan(肖海燕), et al. Acta Chim. Sinica(化学学报), 2005,63 (14):1343-1347

    24. [24]

      [24] Zhao H Y, Zhou H M, Zhang J X, et al. Biosens. Bioelectron., 2009,25(2):463-468

    25. [25]

      [25] Shleev S, Christenson A, Serezhenkov V, et al. Biochem. J., 2005,385:745-754

    26. [26]

      [26] Liu Y, Wang M K, Zhao F, et al. Biosens. Bioelectron., 2005,21(6):984-988

    27. [27]

      [27] Palmer A E, Randall D W, Xu F, et al. J. Am. Chem. Soc., 1999,121(30):7138-7149

    28. [28]

      [28] Dimcheva N, Horozova E. Biochemistry, 2013,90:1-7

    29. [29]

      [29] Zeng H, Tang Z Q, Liao L W, et al. Chin. J. Chem. Phys., 2011,12(36):10888-10895

    30. [30]

      [30] Tsujimura S, Kamitaka Y, Kano K, et al. Fuel Cells, 2007, 7(6):463-469

    31. [31]

      [31] Stolarczyk K, Sepelowska M, Lyp D, et al. Bioelectrochemistry, 2012,87:154-163

    32. [32]

      [32] Jiang D S, Long S Y, Huang J, et al. Biochem. Eng. J., 2005, 25(1):15-23

    33. [33]

      [33] Clot S, Gutierrez-Sanchez C, Shleev S, et al. Electrochem. Commun., 2012,18:37-40

    34. [34]

      [34] Mano N, Kim H H, Zhang Y C, et al. J. Am. Chem. Soc., 2002,124(22):6480-6486

    35. [35]

      [35] Liu Y, Qu X H, Guo H W, et al. Biosens. Bioelectron., 2006,21(12):2195-2201

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(0)
  • Abstract views(242)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return