Citation: LI Yan-Jiao, YAN Li-Fei, ZHENG Hua-Yan, LI Zhong. Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2315-2323. doi: 10.11862/CJIC.2015.313 shu

Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 15 May 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(No.21276169)资助项目。 (No.21276169)

  • The NaY zeolite with nSi/nAl=2.65 was treated by oxalic acid aqueous solutions and used as supports to prepare CuY catalysts by liquid ion exchange for oxidative carbonylation of methanol to dimethyl carbonate (DMC) in atmospheres condition. The NaY zeolites and their corresponding CuY catalysts were characterized intensively by N2 adsorption-desorption, TEM, XRD, 29Si MAS NMR, NH3-TPD, Py-FTIR and H2-TPR. The results revealed that framework aluminum was leached out by acid, resulting in increase of the framework nSi/nAl ratio, decrease of the relative crystallinity, and formation of mesopores which are favor for diffusion of the products molecules and significantly affect the catalytic activity. Compared with the untreated sample, CuY catalysts treated by 4 h, 0.2 mol·L-1 oxalic acid exhibited higher catalytic performance with the increased space-time yield to DMC and conversion of methanol of 184.9 mg·g-1·h-1 and 10.2% from 103.6 mg·g-1 ·h-1 and 6.3% respectively. It is found the formed mesopores in CuY catalyst enhance the accessibility of Cu active sites by reactants and the diffusion of reactants and products molecules.
  • 加载中
    1. [1]

      [1] Aricò F, Tundo P. Russ. Chem. Rev., 2010,79(6):479-489

    2. [2]

      [2] Selva M, Perosa A. Green Chem., 2008,10(4):457-464

    3. [3]

      [3] Keller N, Rebmann G, Keller V. J. Mol. Catal. A: Chem., 2010,317(1/2):1-18

    4. [4]

      [4] Zhang Y H, Drake I J, Briggs D N, et al. J. Catal., 2006,244 (2):219-229

    5. [5]

      [5] Zhang Y H, Briggs D N, Desmit E, et al. J. Catal., 2007,251 (2):443-452

    6. [6]

      [6] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    7. [7]

      [7] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007,245 (1):11-24

    8. [8]

      [8] Richter M, Fait M J G, Eckelt R, et al. Appl. Catal. A: Envi- ronmental., 2007,73(3/4):269-281

    9. [9]

      [9] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑 华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(08):1483-1490

    10. [10]

      [10] Milina M, Mitchell S, Michels N L, et al. J. Catal., 2013,308 (0):398-407

    11. [11]

      [11] Cho K, Cho H S, De Ménorval L C, et al. Chem. Mater., 2009, 21(23):5664-5673

    12. [12]

      [12] Park D H, Kim S S, Wang H, et al. Angew. Chem., 2009, 121(41):7781-7784

    13. [13]

      [13] García-Martínez J, Johnson M, Valla J, et al. Catal. Sci. Technol., 2012,2(5):987-994

    14. [14]

      [14] Dimitrijevic R, Lutz W,Ritzmann A. J. Phys. Chem. Solids, 2006,67(8):1741-1748

    15. [15]

      [15] Cairon O. Chemphyschem, 2013,14(1):244-251

    16. [16]

      [16] Matias P, Lopes J M, Ayrault P, et al. Appl. Catal. A: Gen., 2009,365(2):207-213

    17. [17]

      [17] Baran R, Millot Y, Onfroy T, et al. Microporous Mesoporous Mater., 2012,163:122-130

    18. [18]

      [18] Kao H M, Chang P C. J. Phys. Chem. B, 2006,110(39):19104 -19107

    19. [19]

      [19] Lónyi F, Valyon J, Pál-Borbély G. Microporous Mesoporous Mater., 2003,66(2/3):273-282

    20. [20]

      [20] López-Fonseca R, De Rivas B, Gutiérrez-Ortiz J I, et al. Appl. Catal. B: Environ., 2003,41(1/2):31-42

    21. [21]

      [21] Bottari E, Ciavatta L. Gazz. Chim. Ital., 1968,98:1004-1013

    22. [22]

      [22] Beyerlein R A, Choi-Feng C, Hall J B, et al. Top Catal., 1997,4(1/2):27-42

    23. [23]

      [23] Huang S Y, Chen P Z, Yan, B, et al. Ind. Eng. Chem. Res., 2013,52(19):6349-6356

    24. [24]

      [24] Qin Z X, Shen B J, Gao X H, et al. J Catal., 2011,278(2): 266-275

    25. [25]

      [25] Gao Z, Tang Y, Zhu Y G. Appl. Catal., 1989,56(1):83-94

    26. [26]

      [26] Schroeder K P, Sauer J. J. Phys. Chem., 1993,97(25):6579- 6581

    27. [27]

      [27] Lippmaa E, Maegi M, Samoson A, et al. J. Am. Chem. Soc., 1981,103(17):4992-4996

    28. [28]

      [28] Lutz W, Heidemann D, Hübert C, et al. Z. Anorg. Allg. Chem., 2001,627(11):2559-2564

    29. [29]

      [29] Yan Z M, Ma D, Zhuang J Q, et al. J. Mol. Catal. A: Chem., 2003,194(1/2):153-167

    30. [30]

      [30] Gore K U, Abraham A, Hegde S G, et al. J. Phys. Chem. B, 2002,106(23):6115-6120

    31. [31]

      [31] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites. NewYork: John Wiley and Sons., 1987:499

    32. [32]

      [32] Jin D, Hou Z, Zhang L, et al. Catal. Today, 2008,131(1/2/3/ 4):378-384

    33. [33]

      [33] Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc. Faraday Trans., 1996,92(8):1401-1407

    34. [34]

      [34] Emeis C A. J. Catal., 1993,141(2):347-354

    35. [35]

      [35] Kieger S, Delahay G, Coq B, et al. J. Catal., 1999,183(2): 267-280

    36. [36]

      [36] Herman R G, Lunsford J H, Beyer H, et al. J. Phys. Chem., 1975,79(22):2388-2394

    37. [37]

      [37] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    38. [38]

      [38] Afzal M, Yasmeen G, Saleem M, et al. J. Therm. Anal. Calorim., 2000,62(1):277-284

    39. [39]

      [39] Sato K, Nishimura Y, Matsubayashi N, et al. Microporous Mesoporous Mater., 2003,59(2/3):133-146

    40. [40]

      [40] Maeda H, Kinoshita Y, Reddy K R, et al. Appl. Catal. A: Gen., 1997,163(1/2):59-69

    41. [41]

      [41] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202/206

    42. [42]

      [42] Hartmann M. Angew. Chem. Int. Ed., 2004,43(44):5880- 5882

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jingping Li Suding Yan Jiaxi Wu Qiang Cheng Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return