Citation: LI Yan-Jiao, YAN Li-Fei, ZHENG Hua-Yan, LI Zhong. Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2315-2323. doi: 10.11862/CJIC.2015.313 shu

Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 15 May 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(No.21276169)资助项目。 (No.21276169)

  • The NaY zeolite with nSi/nAl=2.65 was treated by oxalic acid aqueous solutions and used as supports to prepare CuY catalysts by liquid ion exchange for oxidative carbonylation of methanol to dimethyl carbonate (DMC) in atmospheres condition. The NaY zeolites and their corresponding CuY catalysts were characterized intensively by N2 adsorption-desorption, TEM, XRD, 29Si MAS NMR, NH3-TPD, Py-FTIR and H2-TPR. The results revealed that framework aluminum was leached out by acid, resulting in increase of the framework nSi/nAl ratio, decrease of the relative crystallinity, and formation of mesopores which are favor for diffusion of the products molecules and significantly affect the catalytic activity. Compared with the untreated sample, CuY catalysts treated by 4 h, 0.2 mol·L-1 oxalic acid exhibited higher catalytic performance with the increased space-time yield to DMC and conversion of methanol of 184.9 mg·g-1·h-1 and 10.2% from 103.6 mg·g-1 ·h-1 and 6.3% respectively. It is found the formed mesopores in CuY catalyst enhance the accessibility of Cu active sites by reactants and the diffusion of reactants and products molecules.
  • 加载中
    1. [1]

      [1] Aricò F, Tundo P. Russ. Chem. Rev., 2010,79(6):479-489

    2. [2]

      [2] Selva M, Perosa A. Green Chem., 2008,10(4):457-464

    3. [3]

      [3] Keller N, Rebmann G, Keller V. J. Mol. Catal. A: Chem., 2010,317(1/2):1-18

    4. [4]

      [4] Zhang Y H, Drake I J, Briggs D N, et al. J. Catal., 2006,244 (2):219-229

    5. [5]

      [5] Zhang Y H, Briggs D N, Desmit E, et al. J. Catal., 2007,251 (2):443-452

    6. [6]

      [6] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    7. [7]

      [7] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007,245 (1):11-24

    8. [8]

      [8] Richter M, Fait M J G, Eckelt R, et al. Appl. Catal. A: Envi- ronmental., 2007,73(3/4):269-281

    9. [9]

      [9] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑 华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(08):1483-1490

    10. [10]

      [10] Milina M, Mitchell S, Michels N L, et al. J. Catal., 2013,308 (0):398-407

    11. [11]

      [11] Cho K, Cho H S, De Ménorval L C, et al. Chem. Mater., 2009, 21(23):5664-5673

    12. [12]

      [12] Park D H, Kim S S, Wang H, et al. Angew. Chem., 2009, 121(41):7781-7784

    13. [13]

      [13] García-Martínez J, Johnson M, Valla J, et al. Catal. Sci. Technol., 2012,2(5):987-994

    14. [14]

      [14] Dimitrijevic R, Lutz W,Ritzmann A. J. Phys. Chem. Solids, 2006,67(8):1741-1748

    15. [15]

      [15] Cairon O. Chemphyschem, 2013,14(1):244-251

    16. [16]

      [16] Matias P, Lopes J M, Ayrault P, et al. Appl. Catal. A: Gen., 2009,365(2):207-213

    17. [17]

      [17] Baran R, Millot Y, Onfroy T, et al. Microporous Mesoporous Mater., 2012,163:122-130

    18. [18]

      [18] Kao H M, Chang P C. J. Phys. Chem. B, 2006,110(39):19104 -19107

    19. [19]

      [19] Lónyi F, Valyon J, Pál-Borbély G. Microporous Mesoporous Mater., 2003,66(2/3):273-282

    20. [20]

      [20] López-Fonseca R, De Rivas B, Gutiérrez-Ortiz J I, et al. Appl. Catal. B: Environ., 2003,41(1/2):31-42

    21. [21]

      [21] Bottari E, Ciavatta L. Gazz. Chim. Ital., 1968,98:1004-1013

    22. [22]

      [22] Beyerlein R A, Choi-Feng C, Hall J B, et al. Top Catal., 1997,4(1/2):27-42

    23. [23]

      [23] Huang S Y, Chen P Z, Yan, B, et al. Ind. Eng. Chem. Res., 2013,52(19):6349-6356

    24. [24]

      [24] Qin Z X, Shen B J, Gao X H, et al. J Catal., 2011,278(2): 266-275

    25. [25]

      [25] Gao Z, Tang Y, Zhu Y G. Appl. Catal., 1989,56(1):83-94

    26. [26]

      [26] Schroeder K P, Sauer J. J. Phys. Chem., 1993,97(25):6579- 6581

    27. [27]

      [27] Lippmaa E, Maegi M, Samoson A, et al. J. Am. Chem. Soc., 1981,103(17):4992-4996

    28. [28]

      [28] Lutz W, Heidemann D, Hübert C, et al. Z. Anorg. Allg. Chem., 2001,627(11):2559-2564

    29. [29]

      [29] Yan Z M, Ma D, Zhuang J Q, et al. J. Mol. Catal. A: Chem., 2003,194(1/2):153-167

    30. [30]

      [30] Gore K U, Abraham A, Hegde S G, et al. J. Phys. Chem. B, 2002,106(23):6115-6120

    31. [31]

      [31] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites. NewYork: John Wiley and Sons., 1987:499

    32. [32]

      [32] Jin D, Hou Z, Zhang L, et al. Catal. Today, 2008,131(1/2/3/ 4):378-384

    33. [33]

      [33] Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc. Faraday Trans., 1996,92(8):1401-1407

    34. [34]

      [34] Emeis C A. J. Catal., 1993,141(2):347-354

    35. [35]

      [35] Kieger S, Delahay G, Coq B, et al. J. Catal., 1999,183(2): 267-280

    36. [36]

      [36] Herman R G, Lunsford J H, Beyer H, et al. J. Phys. Chem., 1975,79(22):2388-2394

    37. [37]

      [37] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    38. [38]

      [38] Afzal M, Yasmeen G, Saleem M, et al. J. Therm. Anal. Calorim., 2000,62(1):277-284

    39. [39]

      [39] Sato K, Nishimura Y, Matsubayashi N, et al. Microporous Mesoporous Mater., 2003,59(2/3):133-146

    40. [40]

      [40] Maeda H, Kinoshita Y, Reddy K R, et al. Appl. Catal. A: Gen., 1997,163(1/2):59-69

    41. [41]

      [41] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202/206

    42. [42]

      [42] Hartmann M. Angew. Chem. Int. Ed., 2004,43(44):5880- 5882

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(290)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return