Citation: LI Yan-Jiao, YAN Li-Fei, ZHENG Hua-Yan, LI Zhong. Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2315-2323. doi: 10.11862/CJIC.2015.313 shu

Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 15 May 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(No.21276169)资助项目。 (No.21276169)

  • The NaY zeolite with nSi/nAl=2.65 was treated by oxalic acid aqueous solutions and used as supports to prepare CuY catalysts by liquid ion exchange for oxidative carbonylation of methanol to dimethyl carbonate (DMC) in atmospheres condition. The NaY zeolites and their corresponding CuY catalysts were characterized intensively by N2 adsorption-desorption, TEM, XRD, 29Si MAS NMR, NH3-TPD, Py-FTIR and H2-TPR. The results revealed that framework aluminum was leached out by acid, resulting in increase of the framework nSi/nAl ratio, decrease of the relative crystallinity, and formation of mesopores which are favor for diffusion of the products molecules and significantly affect the catalytic activity. Compared with the untreated sample, CuY catalysts treated by 4 h, 0.2 mol·L-1 oxalic acid exhibited higher catalytic performance with the increased space-time yield to DMC and conversion of methanol of 184.9 mg·g-1·h-1 and 10.2% from 103.6 mg·g-1 ·h-1 and 6.3% respectively. It is found the formed mesopores in CuY catalyst enhance the accessibility of Cu active sites by reactants and the diffusion of reactants and products molecules.
  • 加载中
    1. [1]

      [1] Aricò F, Tundo P. Russ. Chem. Rev., 2010,79(6):479-489

    2. [2]

      [2] Selva M, Perosa A. Green Chem., 2008,10(4):457-464

    3. [3]

      [3] Keller N, Rebmann G, Keller V. J. Mol. Catal. A: Chem., 2010,317(1/2):1-18

    4. [4]

      [4] Zhang Y H, Drake I J, Briggs D N, et al. J. Catal., 2006,244 (2):219-229

    5. [5]

      [5] Zhang Y H, Briggs D N, Desmit E, et al. J. Catal., 2007,251 (2):443-452

    6. [6]

      [6] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    7. [7]

      [7] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007,245 (1):11-24

    8. [8]

      [8] Richter M, Fait M J G, Eckelt R, et al. Appl. Catal. A: Envi- ronmental., 2007,73(3/4):269-281

    9. [9]

      [9] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑 华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(08):1483-1490

    10. [10]

      [10] Milina M, Mitchell S, Michels N L, et al. J. Catal., 2013,308 (0):398-407

    11. [11]

      [11] Cho K, Cho H S, De Ménorval L C, et al. Chem. Mater., 2009, 21(23):5664-5673

    12. [12]

      [12] Park D H, Kim S S, Wang H, et al. Angew. Chem., 2009, 121(41):7781-7784

    13. [13]

      [13] García-Martínez J, Johnson M, Valla J, et al. Catal. Sci. Technol., 2012,2(5):987-994

    14. [14]

      [14] Dimitrijevic R, Lutz W,Ritzmann A. J. Phys. Chem. Solids, 2006,67(8):1741-1748

    15. [15]

      [15] Cairon O. Chemphyschem, 2013,14(1):244-251

    16. [16]

      [16] Matias P, Lopes J M, Ayrault P, et al. Appl. Catal. A: Gen., 2009,365(2):207-213

    17. [17]

      [17] Baran R, Millot Y, Onfroy T, et al. Microporous Mesoporous Mater., 2012,163:122-130

    18. [18]

      [18] Kao H M, Chang P C. J. Phys. Chem. B, 2006,110(39):19104 -19107

    19. [19]

      [19] Lónyi F, Valyon J, Pál-Borbély G. Microporous Mesoporous Mater., 2003,66(2/3):273-282

    20. [20]

      [20] López-Fonseca R, De Rivas B, Gutiérrez-Ortiz J I, et al. Appl. Catal. B: Environ., 2003,41(1/2):31-42

    21. [21]

      [21] Bottari E, Ciavatta L. Gazz. Chim. Ital., 1968,98:1004-1013

    22. [22]

      [22] Beyerlein R A, Choi-Feng C, Hall J B, et al. Top Catal., 1997,4(1/2):27-42

    23. [23]

      [23] Huang S Y, Chen P Z, Yan, B, et al. Ind. Eng. Chem. Res., 2013,52(19):6349-6356

    24. [24]

      [24] Qin Z X, Shen B J, Gao X H, et al. J Catal., 2011,278(2): 266-275

    25. [25]

      [25] Gao Z, Tang Y, Zhu Y G. Appl. Catal., 1989,56(1):83-94

    26. [26]

      [26] Schroeder K P, Sauer J. J. Phys. Chem., 1993,97(25):6579- 6581

    27. [27]

      [27] Lippmaa E, Maegi M, Samoson A, et al. J. Am. Chem. Soc., 1981,103(17):4992-4996

    28. [28]

      [28] Lutz W, Heidemann D, Hübert C, et al. Z. Anorg. Allg. Chem., 2001,627(11):2559-2564

    29. [29]

      [29] Yan Z M, Ma D, Zhuang J Q, et al. J. Mol. Catal. A: Chem., 2003,194(1/2):153-167

    30. [30]

      [30] Gore K U, Abraham A, Hegde S G, et al. J. Phys. Chem. B, 2002,106(23):6115-6120

    31. [31]

      [31] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites. NewYork: John Wiley and Sons., 1987:499

    32. [32]

      [32] Jin D, Hou Z, Zhang L, et al. Catal. Today, 2008,131(1/2/3/ 4):378-384

    33. [33]

      [33] Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc. Faraday Trans., 1996,92(8):1401-1407

    34. [34]

      [34] Emeis C A. J. Catal., 1993,141(2):347-354

    35. [35]

      [35] Kieger S, Delahay G, Coq B, et al. J. Catal., 1999,183(2): 267-280

    36. [36]

      [36] Herman R G, Lunsford J H, Beyer H, et al. J. Phys. Chem., 1975,79(22):2388-2394

    37. [37]

      [37] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    38. [38]

      [38] Afzal M, Yasmeen G, Saleem M, et al. J. Therm. Anal. Calorim., 2000,62(1):277-284

    39. [39]

      [39] Sato K, Nishimura Y, Matsubayashi N, et al. Microporous Mesoporous Mater., 2003,59(2/3):133-146

    40. [40]

      [40] Maeda H, Kinoshita Y, Reddy K R, et al. Appl. Catal. A: Gen., 1997,163(1/2):59-69

    41. [41]

      [41] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202/206

    42. [42]

      [42] Hartmann M. Angew. Chem. Int. Ed., 2004,43(44):5880- 5882

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(225)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return