Citation: LI Yan-Jiao, YAN Li-Fei, ZHENG Hua-Yan, LI Zhong. Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2315-2323. doi: 10.11862/CJIC.2015.313 shu

Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 15 May 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(No.21276169)资助项目。 (No.21276169)

  • The NaY zeolite with nSi/nAl=2.65 was treated by oxalic acid aqueous solutions and used as supports to prepare CuY catalysts by liquid ion exchange for oxidative carbonylation of methanol to dimethyl carbonate (DMC) in atmospheres condition. The NaY zeolites and their corresponding CuY catalysts were characterized intensively by N2 adsorption-desorption, TEM, XRD, 29Si MAS NMR, NH3-TPD, Py-FTIR and H2-TPR. The results revealed that framework aluminum was leached out by acid, resulting in increase of the framework nSi/nAl ratio, decrease of the relative crystallinity, and formation of mesopores which are favor for diffusion of the products molecules and significantly affect the catalytic activity. Compared with the untreated sample, CuY catalysts treated by 4 h, 0.2 mol·L-1 oxalic acid exhibited higher catalytic performance with the increased space-time yield to DMC and conversion of methanol of 184.9 mg·g-1·h-1 and 10.2% from 103.6 mg·g-1 ·h-1 and 6.3% respectively. It is found the formed mesopores in CuY catalyst enhance the accessibility of Cu active sites by reactants and the diffusion of reactants and products molecules.
  • 加载中
    1. [1]

      [1] Aricò F, Tundo P. Russ. Chem. Rev., 2010,79(6):479-489

    2. [2]

      [2] Selva M, Perosa A. Green Chem., 2008,10(4):457-464

    3. [3]

      [3] Keller N, Rebmann G, Keller V. J. Mol. Catal. A: Chem., 2010,317(1/2):1-18

    4. [4]

      [4] Zhang Y H, Drake I J, Briggs D N, et al. J. Catal., 2006,244 (2):219-229

    5. [5]

      [5] Zhang Y H, Briggs D N, Desmit E, et al. J. Catal., 2007,251 (2):443-452

    6. [6]

      [6] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    7. [7]

      [7] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007,245 (1):11-24

    8. [8]

      [8] Richter M, Fait M J G, Eckelt R, et al. Appl. Catal. A: Envi- ronmental., 2007,73(3/4):269-281

    9. [9]

      [9] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑 华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(08):1483-1490

    10. [10]

      [10] Milina M, Mitchell S, Michels N L, et al. J. Catal., 2013,308 (0):398-407

    11. [11]

      [11] Cho K, Cho H S, De Ménorval L C, et al. Chem. Mater., 2009, 21(23):5664-5673

    12. [12]

      [12] Park D H, Kim S S, Wang H, et al. Angew. Chem., 2009, 121(41):7781-7784

    13. [13]

      [13] García-Martínez J, Johnson M, Valla J, et al. Catal. Sci. Technol., 2012,2(5):987-994

    14. [14]

      [14] Dimitrijevic R, Lutz W,Ritzmann A. J. Phys. Chem. Solids, 2006,67(8):1741-1748

    15. [15]

      [15] Cairon O. Chemphyschem, 2013,14(1):244-251

    16. [16]

      [16] Matias P, Lopes J M, Ayrault P, et al. Appl. Catal. A: Gen., 2009,365(2):207-213

    17. [17]

      [17] Baran R, Millot Y, Onfroy T, et al. Microporous Mesoporous Mater., 2012,163:122-130

    18. [18]

      [18] Kao H M, Chang P C. J. Phys. Chem. B, 2006,110(39):19104 -19107

    19. [19]

      [19] Lónyi F, Valyon J, Pál-Borbély G. Microporous Mesoporous Mater., 2003,66(2/3):273-282

    20. [20]

      [20] López-Fonseca R, De Rivas B, Gutiérrez-Ortiz J I, et al. Appl. Catal. B: Environ., 2003,41(1/2):31-42

    21. [21]

      [21] Bottari E, Ciavatta L. Gazz. Chim. Ital., 1968,98:1004-1013

    22. [22]

      [22] Beyerlein R A, Choi-Feng C, Hall J B, et al. Top Catal., 1997,4(1/2):27-42

    23. [23]

      [23] Huang S Y, Chen P Z, Yan, B, et al. Ind. Eng. Chem. Res., 2013,52(19):6349-6356

    24. [24]

      [24] Qin Z X, Shen B J, Gao X H, et al. J Catal., 2011,278(2): 266-275

    25. [25]

      [25] Gao Z, Tang Y, Zhu Y G. Appl. Catal., 1989,56(1):83-94

    26. [26]

      [26] Schroeder K P, Sauer J. J. Phys. Chem., 1993,97(25):6579- 6581

    27. [27]

      [27] Lippmaa E, Maegi M, Samoson A, et al. J. Am. Chem. Soc., 1981,103(17):4992-4996

    28. [28]

      [28] Lutz W, Heidemann D, Hübert C, et al. Z. Anorg. Allg. Chem., 2001,627(11):2559-2564

    29. [29]

      [29] Yan Z M, Ma D, Zhuang J Q, et al. J. Mol. Catal. A: Chem., 2003,194(1/2):153-167

    30. [30]

      [30] Gore K U, Abraham A, Hegde S G, et al. J. Phys. Chem. B, 2002,106(23):6115-6120

    31. [31]

      [31] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites. NewYork: John Wiley and Sons., 1987:499

    32. [32]

      [32] Jin D, Hou Z, Zhang L, et al. Catal. Today, 2008,131(1/2/3/ 4):378-384

    33. [33]

      [33] Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc. Faraday Trans., 1996,92(8):1401-1407

    34. [34]

      [34] Emeis C A. J. Catal., 1993,141(2):347-354

    35. [35]

      [35] Kieger S, Delahay G, Coq B, et al. J. Catal., 1999,183(2): 267-280

    36. [36]

      [36] Herman R G, Lunsford J H, Beyer H, et al. J. Phys. Chem., 1975,79(22):2388-2394

    37. [37]

      [37] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    38. [38]

      [38] Afzal M, Yasmeen G, Saleem M, et al. J. Therm. Anal. Calorim., 2000,62(1):277-284

    39. [39]

      [39] Sato K, Nishimura Y, Matsubayashi N, et al. Microporous Mesoporous Mater., 2003,59(2/3):133-146

    40. [40]

      [40] Maeda H, Kinoshita Y, Reddy K R, et al. Appl. Catal. A: Gen., 1997,163(1/2):59-69

    41. [41]

      [41] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202/206

    42. [42]

      [42] Hartmann M. Angew. Chem. Int. Ed., 2004,43(44):5880- 5882

  • 加载中
    1. [1]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    8. [8]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    9. [9]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return