Citation: LI Yan-Jiao, YAN Li-Fei, ZHENG Hua-Yan, LI Zhong. Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2315-2323. doi: 10.11862/CJIC.2015.313 shu

Effects of Acid Treatment on Pore Structure and Oxidation Carbonylation Performance of CuY Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 15 May 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(No.21276169)资助项目。 (No.21276169)

  • The NaY zeolite with nSi/nAl=2.65 was treated by oxalic acid aqueous solutions and used as supports to prepare CuY catalysts by liquid ion exchange for oxidative carbonylation of methanol to dimethyl carbonate (DMC) in atmospheres condition. The NaY zeolites and their corresponding CuY catalysts were characterized intensively by N2 adsorption-desorption, TEM, XRD, 29Si MAS NMR, NH3-TPD, Py-FTIR and H2-TPR. The results revealed that framework aluminum was leached out by acid, resulting in increase of the framework nSi/nAl ratio, decrease of the relative crystallinity, and formation of mesopores which are favor for diffusion of the products molecules and significantly affect the catalytic activity. Compared with the untreated sample, CuY catalysts treated by 4 h, 0.2 mol·L-1 oxalic acid exhibited higher catalytic performance with the increased space-time yield to DMC and conversion of methanol of 184.9 mg·g-1·h-1 and 10.2% from 103.6 mg·g-1 ·h-1 and 6.3% respectively. It is found the formed mesopores in CuY catalyst enhance the accessibility of Cu active sites by reactants and the diffusion of reactants and products molecules.
  • 加载中
    1. [1]

      [1] Aricò F, Tundo P. Russ. Chem. Rev., 2010,79(6):479-489

    2. [2]

      [2] Selva M, Perosa A. Green Chem., 2008,10(4):457-464

    3. [3]

      [3] Keller N, Rebmann G, Keller V. J. Mol. Catal. A: Chem., 2010,317(1/2):1-18

    4. [4]

      [4] Zhang Y H, Drake I J, Briggs D N, et al. J. Catal., 2006,244 (2):219-229

    5. [5]

      [5] Zhang Y H, Briggs D N, Desmit E, et al. J. Catal., 2007,251 (2):443-452

    6. [6]

      [6] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    7. [7]

      [7] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007,245 (1):11-24

    8. [8]

      [8] Richter M, Fait M J G, Eckelt R, et al. Appl. Catal. A: Envi- ronmental., 2007,73(3/4):269-281

    9. [9]

      [9] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑 华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(08):1483-1490

    10. [10]

      [10] Milina M, Mitchell S, Michels N L, et al. J. Catal., 2013,308 (0):398-407

    11. [11]

      [11] Cho K, Cho H S, De Ménorval L C, et al. Chem. Mater., 2009, 21(23):5664-5673

    12. [12]

      [12] Park D H, Kim S S, Wang H, et al. Angew. Chem., 2009, 121(41):7781-7784

    13. [13]

      [13] García-Martínez J, Johnson M, Valla J, et al. Catal. Sci. Technol., 2012,2(5):987-994

    14. [14]

      [14] Dimitrijevic R, Lutz W,Ritzmann A. J. Phys. Chem. Solids, 2006,67(8):1741-1748

    15. [15]

      [15] Cairon O. Chemphyschem, 2013,14(1):244-251

    16. [16]

      [16] Matias P, Lopes J M, Ayrault P, et al. Appl. Catal. A: Gen., 2009,365(2):207-213

    17. [17]

      [17] Baran R, Millot Y, Onfroy T, et al. Microporous Mesoporous Mater., 2012,163:122-130

    18. [18]

      [18] Kao H M, Chang P C. J. Phys. Chem. B, 2006,110(39):19104 -19107

    19. [19]

      [19] Lónyi F, Valyon J, Pál-Borbély G. Microporous Mesoporous Mater., 2003,66(2/3):273-282

    20. [20]

      [20] López-Fonseca R, De Rivas B, Gutiérrez-Ortiz J I, et al. Appl. Catal. B: Environ., 2003,41(1/2):31-42

    21. [21]

      [21] Bottari E, Ciavatta L. Gazz. Chim. Ital., 1968,98:1004-1013

    22. [22]

      [22] Beyerlein R A, Choi-Feng C, Hall J B, et al. Top Catal., 1997,4(1/2):27-42

    23. [23]

      [23] Huang S Y, Chen P Z, Yan, B, et al. Ind. Eng. Chem. Res., 2013,52(19):6349-6356

    24. [24]

      [24] Qin Z X, Shen B J, Gao X H, et al. J Catal., 2011,278(2): 266-275

    25. [25]

      [25] Gao Z, Tang Y, Zhu Y G. Appl. Catal., 1989,56(1):83-94

    26. [26]

      [26] Schroeder K P, Sauer J. J. Phys. Chem., 1993,97(25):6579- 6581

    27. [27]

      [27] Lippmaa E, Maegi M, Samoson A, et al. J. Am. Chem. Soc., 1981,103(17):4992-4996

    28. [28]

      [28] Lutz W, Heidemann D, Hübert C, et al. Z. Anorg. Allg. Chem., 2001,627(11):2559-2564

    29. [29]

      [29] Yan Z M, Ma D, Zhuang J Q, et al. J. Mol. Catal. A: Chem., 2003,194(1/2):153-167

    30. [30]

      [30] Gore K U, Abraham A, Hegde S G, et al. J. Phys. Chem. B, 2002,106(23):6115-6120

    31. [31]

      [31] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites. NewYork: John Wiley and Sons., 1987:499

    32. [32]

      [32] Jin D, Hou Z, Zhang L, et al. Catal. Today, 2008,131(1/2/3/ 4):378-384

    33. [33]

      [33] Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc. Faraday Trans., 1996,92(8):1401-1407

    34. [34]

      [34] Emeis C A. J. Catal., 1993,141(2):347-354

    35. [35]

      [35] Kieger S, Delahay G, Coq B, et al. J. Catal., 1999,183(2): 267-280

    36. [36]

      [36] Herman R G, Lunsford J H, Beyer H, et al. J. Phys. Chem., 1975,79(22):2388-2394

    37. [37]

      [37] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    38. [38]

      [38] Afzal M, Yasmeen G, Saleem M, et al. J. Therm. Anal. Calorim., 2000,62(1):277-284

    39. [39]

      [39] Sato K, Nishimura Y, Matsubayashi N, et al. Microporous Mesoporous Mater., 2003,59(2/3):133-146

    40. [40]

      [40] Maeda H, Kinoshita Y, Reddy K R, et al. Appl. Catal. A: Gen., 1997,163(1/2):59-69

    41. [41]

      [41] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202/206

    42. [42]

      [42] Hartmann M. Angew. Chem. Int. Ed., 2004,43(44):5880- 5882

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(221)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return