Citation: DAI Ji-Xiang, ZHANG Zhao-Fu, WANG Yong-Chang, WANG Shou-Hao, SHA Jian-Jun. In situ Growth of SiC Nanofibers on Carbon Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2379-2384. doi: 10.11862/CJIC.2015.309 shu

In situ Growth of SiC Nanofibers on Carbon Fibers

  • Corresponding author: SHA Jian-Jun, 
  • Received Date: 13 July 2015
    Available Online: 25 August 2015

    Fund Project: 教育部新世纪人才计划(No.NCET-11-0052) (No.NCET-11-0052)高等学校博士学科点专项科研基金博导类(No.2013004110013)资助项目。 (No.2013004110013)

  • SiC nanofibers were synthesized on the carbon fiber fabrics by chemical vapor reactions. The morphology, microstructure and crystallinity of SiC nanofibers were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM), respectively. Results indicated that the large quantity of SiC nanofibers can be sythesized on the carbon fibers. The different morphologis were observed for the SiC nanofibers synthesized at different temperatures, but the diameters was almost same, which is about 100~300 nm. Based on the synthesis process and the characterization results, the vapor-solid (VS) reaction process are dominant mechanism for the growth of SiC nanofibers.
  • 加载中
    1. [1]

      [1] Seong H K, Choi H J, Lee S K, et al. Appl. Phys. Lett., 2004,85(7):1256-1258

    2. [2]

      [2] Yan B H, Zhou G, Duan W H, et al. Appl. Phys. Lett., 2006, 89(2):023104(3Pages)

    3. [3]

      [3] Shim H W, Kuppers J D, Huang H. J. Nanosci. Nanotechnol., 2008,8(8):3999-4002

    4. [4]

      [4] Yang W, Araki H, Tang C C, et al. Adv. Mater., 2005,17 (12):1519-1523

    5. [5]

      [5] MA Xiao-Jian(马小健), SUN Chang-Hui(孙常慧), QIAN Yi- Tai(钱逸泰). Chinese. J. Inorg. Chem.(无机化学学报), 2013,29(11):2276-2282

    6. [6]

      [6] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964,4(5):89-90

    7. [7]

      [7] Trentler T J, Hickmen K M, Geol S C, et al. Science, 1995, 270(5243):1791-1794

    8. [8]

      [8] Niu J J, Wang J N. Eur. J. Inorg. Chem., 2007,2007(25): 4006-4010

    9. [9]

      [9] Fu Q G, Li H J, Shi X H, et al. Mater. Chem. Phys., 2006, 100(1):108-111

    10. [10]

      [10] Li Z J, Li H J, Chen X L, et al. Appl. Phys. A: Mater., 2003, 76(4):637-640

    11. [11]

      [11] HAO Ya-Juan(郝雅娟), JIN Guo-Qiang(靳国强), GUO Xiang -Yun(郭向云). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(10):1833-1837

    12. [12]

      [12] Gundiah G, Madhav G V, Govindaraj A, et al. J. Mater. Chem., 2002,12(5):1606-1611

    13. [13]

      [13] Ye H, Titchenal N, Gogotsi Y, et al. Adv. Mater., 2005,17 (12):1531-1535

    14. [14]

      [14] Senthil K, Yong K. Mater. Chem. Phys., 2008,112(1):88-93

    15. [15]

      [15] ZHANG Yong(张勇), CHENG Zhi-Zhan(陈之战), SHI Er- Wei(施尔畏), et al. J. Inorg. Mater.(无机材料学报), 2009, 24(2):285-290

    16. [16]

      [16] Wang Z L, Dai Z R, Gao R P, et al. Appl. Phys. Lett., 2000, 77(21):3349-3351

    17. [17]

      [17] Wei G D, Qin W P, Zheng K Z, et al. Crys. Growth Des., 2009,9(3):1431-1435

    18. [18]

      [18] Wu R B, Zha B L, Wang L Y, et al. Phys. Status Solidi A, 2012,209(3):553-558

    19. [19]

      [19] Lu Q Y, Hu J Q, Tang K B, et al. Appl. Phys. Lett., 1999, 75(4):507-509

    20. [20]

      [20] Wu R B, Li B S, Gao M X, et al. Nanotechnology, 2008,19 (33):335-602

    21. [21]

      [21] Xia Y N, Yang P D, Sun Y G, et al. Adv. Mater., 2003,15 (5):353-361

    22. [22]

      [22] Brenner S S, Sears G W. Acta Metall. Sinica, 1956,4(3):268 -270

    23. [23]

      [23] Oding I A, Koptyev I M. Met. Sci. Heat Treat., 1961,3(7): 291-294

    24. [24]

      [24] Shi W S, Peng H Y, Zheng Y F, et al. Adv. Mater., 2000,12 (18):1343-1345

    25. [25]

      [25] Zhang R Q, Lifshitz Y, Lee S T. Adv. Mater., 2003,15(7/8): 635-640

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

Metrics
  • PDF Downloads(0)
  • Abstract views(265)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return