Citation: DAI Ji-Xiang, ZHANG Zhao-Fu, WANG Yong-Chang, WANG Shou-Hao, SHA Jian-Jun. In situ Growth of SiC Nanofibers on Carbon Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2379-2384. doi: 10.11862/CJIC.2015.309 shu

In situ Growth of SiC Nanofibers on Carbon Fibers

  • Corresponding author: SHA Jian-Jun, 
  • Received Date: 13 July 2015
    Available Online: 25 August 2015

    Fund Project: 教育部新世纪人才计划(No.NCET-11-0052) (No.NCET-11-0052)高等学校博士学科点专项科研基金博导类(No.2013004110013)资助项目。 (No.2013004110013)

  • SiC nanofibers were synthesized on the carbon fiber fabrics by chemical vapor reactions. The morphology, microstructure and crystallinity of SiC nanofibers were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM), respectively. Results indicated that the large quantity of SiC nanofibers can be sythesized on the carbon fibers. The different morphologis were observed for the SiC nanofibers synthesized at different temperatures, but the diameters was almost same, which is about 100~300 nm. Based on the synthesis process and the characterization results, the vapor-solid (VS) reaction process are dominant mechanism for the growth of SiC nanofibers.
  • 加载中
    1. [1]

      [1] Seong H K, Choi H J, Lee S K, et al. Appl. Phys. Lett., 2004,85(7):1256-1258

    2. [2]

      [2] Yan B H, Zhou G, Duan W H, et al. Appl. Phys. Lett., 2006, 89(2):023104(3Pages)

    3. [3]

      [3] Shim H W, Kuppers J D, Huang H. J. Nanosci. Nanotechnol., 2008,8(8):3999-4002

    4. [4]

      [4] Yang W, Araki H, Tang C C, et al. Adv. Mater., 2005,17 (12):1519-1523

    5. [5]

      [5] MA Xiao-Jian(马小健), SUN Chang-Hui(孙常慧), QIAN Yi- Tai(钱逸泰). Chinese. J. Inorg. Chem.(无机化学学报), 2013,29(11):2276-2282

    6. [6]

      [6] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964,4(5):89-90

    7. [7]

      [7] Trentler T J, Hickmen K M, Geol S C, et al. Science, 1995, 270(5243):1791-1794

    8. [8]

      [8] Niu J J, Wang J N. Eur. J. Inorg. Chem., 2007,2007(25): 4006-4010

    9. [9]

      [9] Fu Q G, Li H J, Shi X H, et al. Mater. Chem. Phys., 2006, 100(1):108-111

    10. [10]

      [10] Li Z J, Li H J, Chen X L, et al. Appl. Phys. A: Mater., 2003, 76(4):637-640

    11. [11]

      [11] HAO Ya-Juan(郝雅娟), JIN Guo-Qiang(靳国强), GUO Xiang -Yun(郭向云). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(10):1833-1837

    12. [12]

      [12] Gundiah G, Madhav G V, Govindaraj A, et al. J. Mater. Chem., 2002,12(5):1606-1611

    13. [13]

      [13] Ye H, Titchenal N, Gogotsi Y, et al. Adv. Mater., 2005,17 (12):1531-1535

    14. [14]

      [14] Senthil K, Yong K. Mater. Chem. Phys., 2008,112(1):88-93

    15. [15]

      [15] ZHANG Yong(张勇), CHENG Zhi-Zhan(陈之战), SHI Er- Wei(施尔畏), et al. J. Inorg. Mater.(无机材料学报), 2009, 24(2):285-290

    16. [16]

      [16] Wang Z L, Dai Z R, Gao R P, et al. Appl. Phys. Lett., 2000, 77(21):3349-3351

    17. [17]

      [17] Wei G D, Qin W P, Zheng K Z, et al. Crys. Growth Des., 2009,9(3):1431-1435

    18. [18]

      [18] Wu R B, Zha B L, Wang L Y, et al. Phys. Status Solidi A, 2012,209(3):553-558

    19. [19]

      [19] Lu Q Y, Hu J Q, Tang K B, et al. Appl. Phys. Lett., 1999, 75(4):507-509

    20. [20]

      [20] Wu R B, Li B S, Gao M X, et al. Nanotechnology, 2008,19 (33):335-602

    21. [21]

      [21] Xia Y N, Yang P D, Sun Y G, et al. Adv. Mater., 2003,15 (5):353-361

    22. [22]

      [22] Brenner S S, Sears G W. Acta Metall. Sinica, 1956,4(3):268 -270

    23. [23]

      [23] Oding I A, Koptyev I M. Met. Sci. Heat Treat., 1961,3(7): 291-294

    24. [24]

      [24] Shi W S, Peng H Y, Zheng Y F, et al. Adv. Mater., 2000,12 (18):1343-1345

    25. [25]

      [25] Zhang R Q, Lifshitz Y, Lee S T. Adv. Mater., 2003,15(7/8): 635-640

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    8. [8]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    12. [12]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    13. [13]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    14. [14]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    19. [19]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return