Citation: LIU Jia-Bin, ZHANG Hui, CUI Yan-Hua, LIU Xiao-Jiang, LIU Jin-Song. Pulsed Laser Deposited NiCo2S4 Thin Films and Investigation of Their Electrochemical Properties[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2331-2336. doi: 10.11862/CJIC.2015.306 shu

Pulsed Laser Deposited NiCo2S4 Thin Films and Investigation of Their Electrochemical Properties

  • Corresponding author: CUI Yan-Hua,  LIU Xiao-Jiang, 
  • Received Date: 10 March 2015
    Available Online: 16 September 2015

    Fund Project: 中国工程物理研究院科学技术基金(No.2013A0302014) (No.2013A0302014)中国工程物理研究院超精密加工技术重点实验室基金(No.ZZ13007)资助项目。 (No.ZZ13007)

  • NiCo2S4 thin films have been successfully prepared by pulsed laser deposition. The structural, electrochemical properties and reaction mechanism of the NiCo2S4 thin film anodes for lithium ion batteries have been investigated by transmission electron microscopy (TEM), selected-area electron diffraction measurements (SAED), the charge/discharge measurements and cyclic voltammetry (CV). The charge/discharge results suggested that in the range of 0~3.0 V(vs Li+/Li), the reversible discharge capacity was 698 mAh·g-1 at a current density of 3 μA·cm-2. After 200 cycles, the discharge capacity was 365 mAh·g-1. Multistep reactions are revealed by the CV data of NiCo2S4 thin films. Ex situ TEM results showed that NiCo2S4 could react with Li to form Li2S, Co and Ni during initial discharging and NiS and CoS formed upon charging. The reversible electrochemical reacting occurred between NiS, CoS and Li2S, Co, Ni during the following cycles. NiCo2S4 was believed to be a promising anode material for rechargeable lithium batteries due to its good cycle performance.
  • 加载中
    1. [1]

      [1] Tarascon J M, Armand M. Nature, 2001,414:359-367

    2. [2]

      [2] Geng H, Kong S F, Wang Y. J. Mater. Chem. A, 2014,2: 15152-15158

    3. [3]

      [3] Ruan H C, Li Y F, Qiu H Y, et al. J. Alloys Compd., 2014, 588:357-360

    4. [4]

      [4] Mi L W, Chen Y F, Wei W T, et al. RSC Adv., 2013,3: 17431-17439

    5. [5]

      [5] Gu Y, Xu Y, Wang Y. ACS Appl. Mater. Inter., 2013,5:801- 806

    6. [6]

      [6] Wang Q H, Jiao L F, Du H M, et al. J. Mater. Chem., 2011,2:327-329

    7. [7]

      [7] Wang Y, Wu J J, Tang Y F, et al. ACS Appl. Mater. Interfaces, 2012,4:4246-4250

    8. [8]

      [8] Sen U K, Mitra S. J. Solid State Electrochem., 2014,18:2701 -2708

    9. [9]

      [9] Zhang Z, Zhou C K, Huang L, et al. Electrochim. Acta, 2013,114:88-94

    10. [10]

      [10] Liu S Y, Lu X, Xie J, et al. ACS Appl. Mater. Interfaces, 2013,5:1588-1595

    11. [11]

      [11] Lee J O, Seo J U, Song J H, et al. Electrochem. Commun., 2013,28:71-74

    12. [12]

      [12] Li J J, Shen J, Li Z Q, et al. Mater. Lett., 2013,92:330- 333

    13. [13]

      [13] Yang X, Xu J, Xi L J, et al. J. Nanopart. Res., 2012,14:931

    14. [14]

      [14] Zhou W H, Zhou Y L, Feng J, et al. Chem. Phys. Lett., 2012,546:115-119

    15. [15]

      [15] Yin X S, Tang C H, Chen M H, et al. J. Mater. Chem. A, 2013,1:7927-7932

    16. [16]

      [16] Tang X S, Yao X Y, Chen Y, et al. J. Power Sources, 2014,257:90-95

    17. [17]

      [17] Wan H Z, Jiang J J, Yu J W, et al. CrystEngComm, 2013, 15:7649-7651

    18. [18]

      [18] Yang J Q, Guo W, Li D, et al. Electrochim. Acta, 2014,144: 16-21

    19. [19]

      [19] Chen H C, Jiang J J, Zhang L, et al. J. Power Sources, 2014,254:249-257

    20. [20]

      [20] ZHANG Hua(张华), ZHOU Yong Ning(周永宁), WU Xiao Jing(吴晓京), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2008,24:1287-1291

    21. [21]

      [21] Jamnik J, Maier J. Phys. Chem. Chem. Phys., 2003,5:5215- 5220

    22. [22]

      [22] Zhukovskii Y F, Kotomin E A, Balaya P, et al. Solid State Sci., 2008,10:491-495

    23. [23]

      [23] Yu X Q, Sun J P, Tang K, et al. Phys. Chem. Chem. Phys., 2009,11:9497-9503

    24. [24]

      [24] Dai H Q, Zhou Y N, Sun Q, et al. Electrochim. Acta, 2012,76:145-515

  • 加载中
    1. [1]

      Xintong Zhu Bin Cao Chong Yan Cheng Tang Aibing Chen Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-. doi: 10.1016/j.actphy.2025.100096

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

Metrics
  • PDF Downloads(0)
  • Abstract views(465)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return