Citation: LIU Jia-Bin, ZHANG Hui, CUI Yan-Hua, LIU Xiao-Jiang, LIU Jin-Song. Pulsed Laser Deposited NiCo2S4 Thin Films and Investigation of Their Electrochemical Properties[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2331-2336. doi: 10.11862/CJIC.2015.306 shu

Pulsed Laser Deposited NiCo2S4 Thin Films and Investigation of Their Electrochemical Properties

  • Corresponding author: CUI Yan-Hua,  LIU Xiao-Jiang, 
  • Received Date: 10 March 2015
    Available Online: 16 September 2015

    Fund Project: 中国工程物理研究院科学技术基金(No.2013A0302014) (No.2013A0302014)中国工程物理研究院超精密加工技术重点实验室基金(No.ZZ13007)资助项目。 (No.ZZ13007)

  • NiCo2S4 thin films have been successfully prepared by pulsed laser deposition. The structural, electrochemical properties and reaction mechanism of the NiCo2S4 thin film anodes for lithium ion batteries have been investigated by transmission electron microscopy (TEM), selected-area electron diffraction measurements (SAED), the charge/discharge measurements and cyclic voltammetry (CV). The charge/discharge results suggested that in the range of 0~3.0 V(vs Li+/Li), the reversible discharge capacity was 698 mAh·g-1 at a current density of 3 μA·cm-2. After 200 cycles, the discharge capacity was 365 mAh·g-1. Multistep reactions are revealed by the CV data of NiCo2S4 thin films. Ex situ TEM results showed that NiCo2S4 could react with Li to form Li2S, Co and Ni during initial discharging and NiS and CoS formed upon charging. The reversible electrochemical reacting occurred between NiS, CoS and Li2S, Co, Ni during the following cycles. NiCo2S4 was believed to be a promising anode material for rechargeable lithium batteries due to its good cycle performance.
  • 加载中
    1. [1]

      [1] Tarascon J M, Armand M. Nature, 2001,414:359-367

    2. [2]

      [2] Geng H, Kong S F, Wang Y. J. Mater. Chem. A, 2014,2: 15152-15158

    3. [3]

      [3] Ruan H C, Li Y F, Qiu H Y, et al. J. Alloys Compd., 2014, 588:357-360

    4. [4]

      [4] Mi L W, Chen Y F, Wei W T, et al. RSC Adv., 2013,3: 17431-17439

    5. [5]

      [5] Gu Y, Xu Y, Wang Y. ACS Appl. Mater. Inter., 2013,5:801- 806

    6. [6]

      [6] Wang Q H, Jiao L F, Du H M, et al. J. Mater. Chem., 2011,2:327-329

    7. [7]

      [7] Wang Y, Wu J J, Tang Y F, et al. ACS Appl. Mater. Interfaces, 2012,4:4246-4250

    8. [8]

      [8] Sen U K, Mitra S. J. Solid State Electrochem., 2014,18:2701 -2708

    9. [9]

      [9] Zhang Z, Zhou C K, Huang L, et al. Electrochim. Acta, 2013,114:88-94

    10. [10]

      [10] Liu S Y, Lu X, Xie J, et al. ACS Appl. Mater. Interfaces, 2013,5:1588-1595

    11. [11]

      [11] Lee J O, Seo J U, Song J H, et al. Electrochem. Commun., 2013,28:71-74

    12. [12]

      [12] Li J J, Shen J, Li Z Q, et al. Mater. Lett., 2013,92:330- 333

    13. [13]

      [13] Yang X, Xu J, Xi L J, et al. J. Nanopart. Res., 2012,14:931

    14. [14]

      [14] Zhou W H, Zhou Y L, Feng J, et al. Chem. Phys. Lett., 2012,546:115-119

    15. [15]

      [15] Yin X S, Tang C H, Chen M H, et al. J. Mater. Chem. A, 2013,1:7927-7932

    16. [16]

      [16] Tang X S, Yao X Y, Chen Y, et al. J. Power Sources, 2014,257:90-95

    17. [17]

      [17] Wan H Z, Jiang J J, Yu J W, et al. CrystEngComm, 2013, 15:7649-7651

    18. [18]

      [18] Yang J Q, Guo W, Li D, et al. Electrochim. Acta, 2014,144: 16-21

    19. [19]

      [19] Chen H C, Jiang J J, Zhang L, et al. J. Power Sources, 2014,254:249-257

    20. [20]

      [20] ZHANG Hua(张华), ZHOU Yong Ning(周永宁), WU Xiao Jing(吴晓京), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2008,24:1287-1291

    21. [21]

      [21] Jamnik J, Maier J. Phys. Chem. Chem. Phys., 2003,5:5215- 5220

    22. [22]

      [22] Zhukovskii Y F, Kotomin E A, Balaya P, et al. Solid State Sci., 2008,10:491-495

    23. [23]

      [23] Yu X Q, Sun J P, Tang K, et al. Phys. Chem. Chem. Phys., 2009,11:9497-9503

    24. [24]

      [24] Dai H Q, Zhou Y N, Sun Q, et al. Electrochim. Acta, 2012,76:145-515

  • 加载中
    1. [1]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    4. [4]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    11. [11]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    17. [17]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    18. [18]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

Metrics
  • PDF Downloads(0)
  • Abstract views(530)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return