Citation: YANG Yu-Ting, TU Chang-Zheng, MIAO Jiao-Jiao, LI Jun-Li, CHEN Guang. Two Different Co(Ⅱ) Interpenetrating Networks Based on a Flexible Dicarboxylic Acid and Different Bis(imidazole) Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2111-2118. doi: 10.11862/CJIC.2015.291 shu

Two Different Co(Ⅱ) Interpenetrating Networks Based on a Flexible Dicarboxylic Acid and Different Bis(imidazole) Ligands

  • Corresponding author: YANG Yu-Ting, 
  • Received Date: 4 August 2015
    Available Online: 22 September 2015

    Fund Project: 云南省科技厅应用基础研究项目(No.201401CB00299)资助。 (No.201401CB00299)

  • Two interpenetrating networks, namely {[Co(bimb)(L)]·H2O}n(1) and {[Co(bbix)(L)]2}n(2) (H2L=4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid, bimb=1,1'-(1,4-butanediyl)bis(imidazole), bbix=1,4-bis(benzimidazole-1-ylmethyl)-benzene) have been prepared under hydrothermal condition by varying the bis(imidazole) coligands. Single crystal X-ray diffraction indicates that complex 1 displays 2D→3D 3-fold interpenetrating framework with 4-connected sql topology; 2 shows a 3D 4-connected framework of 66 dia topology with 6-fold interpenetration. The results indicate that the shapes of bis(imidazole) coligands have an important effect on the interpenetrating characters and ultimate frameworks. Moreover, the thermal and magnetic properties of the two complexes have also been studied.
  • 加载中
    1. [1]

      [1] Jiang H L, Makal T A, Zhou H C. Coord. Chem. Rev., 2013,257:2232-2249

    2. [2]

      [2] He W W, Li S L, Zang H Y, et al. Coord. Chem. Rev., 2014,279:141-160

    3. [3]

      [3] Elsaidi S K, Mohamed M H, Wojtas L, et al. J. Am. Chem. Soc., 2014,136:5072-5077

    4. [4]

      [4] (a) Park J H, Lee W R, Kim Y, et al. Cryst. Growth Des., 2014,14:699-704

    5. [5]

      (b) Wang Z J, Qin L, Zhang X, et al. Cryst. Growth Des., 2015,15:1303-1310

    6. [6]

      (c) Ju P, Jiang L, Lu T B. Inorg. Chem., 2015,54:6291-6295

    7. [7]

      [5] (a) Batten S R, Robson R. Angew. Chem. Int. Ed., 1998,37: 1460-1494

    8. [8]

      (b) Batten S R. CrystEngComm, 2001,3:67-73

    9. [9]

      (c) Carlucci L, Ciani G, Proserpio D M. Coord. Chem. Rev., 2003,246:247-289

    10. [10]

      [6] Shi P F, Xiong G, Zhao B, et al. Chem. Commun., 2013,49: 2338-2340

    11. [11]

      [7] Rowsell J L C, Yaghi O M. Angew. Chem. Int. Ed., 2005,44: 4670-4679

    12. [12]

      [8] Ren C X, Zheng A L, Cai L X, et al. CrystEngComm, 2014,16:1038-1043

    13. [13]

      [9] Chen P K, Batten S R, Qi Y, et al. Cryst. Growth Des., 2009, 9:2756-2761

    14. [14]

      [10] Miller J S. Adv. Mater., 2001,13:525-527

    15. [15]

      [11] Chu Q, Su Z, Fan J, et al. Cryst. Growth Des., 2011,11: 3885-3894

    16. [16]

      [12] Sun G M, Luo F, Song Y M, et al. Dalton Trans., 2012,41: 11559-11561

    17. [17]

      [13] Qi Y, Che Y X, Batten S R, et al. CrystEngComm, 2008,10: 1027-1030

    18. [18]

      [14] Lan Y Q, Li S L, Qin J S, et al. Inorg. Chem., 2008,47: 10600-10610

    19. [19]

      [15] Qi Y, Li Y H, Wang Y Z. Anorg. Allg. Chem., 2013,639: 2258-2262

    20. [20]

      [16] Wang Y, Qi Y, Li Q, et al. Polyhedron, 2015,87:237-244

    21. [21]

      [17] (a) Wen L L, Lu Z D, Lin J G, et al. Cryst. Growth Des., 2007,7:93-99

    22. [22]

      (b) Li L L, Li H X, Ren Z G, et al. Dalton Trans., 2009,40: 8567-8573

    23. [23]

      [18] Sheldrick G M. SHELXL-97, Programs for the Refinement of Crystal Structure, University of Göttingen, Göttingen, Germany, 1997.

    24. [24]

      [19] (a) Wang Y, Zhao F H, Shi A H, et al. Inorg. Chem. Commun., 2012,20:23-26

    25. [25]

      (b) Liu Y Y, Ma J F, Yang J, et al. Inorg. Chem., 2007,46: 3027-3037

    26. [26]

      (c) Ma L F, Wang L Y, Wang Y Y, et al. Inorg. Chem., 2009,48:915-924

    27. [27]

      [20] (a) Zhou H, Liu G X, Wang X F, et al. CrystEngComm, 2013,15:1377-1388

    28. [28]

      (b) Mukherjee S, Samanta D, Mukherje P S. Cryst. Growth Des., 2013,13:5335-5343

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

Metrics
  • PDF Downloads(0)
  • Abstract views(222)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return