Citation: WANG Hong-Ming, ZHENG Rui, LI Gui-Rong, LI Pei-Si. First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2143-2151. doi: 10.11862/CJIC.2015.290 shu

First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase

  • Corresponding author: LI Gui-Rong, 
  • Received Date: 21 April 2015
    Available Online: 10 September 2015

    Fund Project: 国家自然科学基金(No.51371091,51174099)资助项目。 (No.51371091,51174099)

  • MgZn2 phase is the main reinforcement in the high strength-toughness aluminum alloy, such as Al-Zn-Mg-Cu (7××× series). These alloys can be strengthened by solution and aging heat treatment. The precipitation sequence is recognized as: supersaturated solute→GP area→metastable η' phase→stable η(MgZn2) phase. Therefore, it is important to know the quantum behavior and phase formation mechanism of MgZn2. But till to now, the concerned research has been rarely reported. Besides, the magnetic property of MgZn2 is also important when the aluminum alloy is processed in the presence of magnetic field. By using the first principles method, the electronic and magnetic properties of MgZn2 were calculated and analyzd in detail. The computing results on the band structure and density of state demonstrates that Zn-Mg bond is generated through the interaction of two sp hybrid state, which are from Zn4s-4p hybridized orbit and Mg3s-3p hybridized orbit separately. Especially nearby the Fermi level an intense interaction takes place between the Zn4p and Mg3p orbits. The Mulliken population distribution computation illustrates that the overlapped population distribution of Zn1-Mg or Zn2-Mg almost equals to zero. Here, it is noted that the Zn1 and Zn2 just means the Zn atoms located individually at the edge and the interior of lattice. The calculation outcome of electron density shows that the electron density distribution of Mg-Zn has an obvious locality. Combining these results with the electronegativity difference of Mg and Zn, it is regarded that the Zn-Mg is polar covalent bond. The difference of Zn1-Mg bond and Zn2-Mg bond is that the contribution of Zn24s orbit to the bond formation is higher than that of Zn14s orbit in -10~-6 eV, the contribution of Zn14s orbit to the bond formation is higher than that of Zn24s orbit in 2~5 eV. The population distribution also demonstrates that the overlapped population of Zn1-Zn1 is -1.15, which proves that the electrons are in the antibonding orbit; nevertheless, the population distribution of Zn2-Zn2 is 1.08 and the corresponding electrons are in the bonding orbital. The population distribution and electron density calculating results reveal that the Mg-Mg bond is covalent bond while the Zn1-Zn2 bond is metallic bond. Furthermore, the studies on the integrated spin density of state demonstrate that the MgZn2 phase shows paramagnetism, which stems mainly from the two unpaired electrons in the Zn1-Mg bond, and the paramagnetism of MgZn2 will make a magnetoplastic effect in Al-Zn-Mg-Cu (7××× series) high strength-toughness aluminum alloy in the presence of magnetic field.
  • 加载中
    1. [1]

      [1] LIU Xiao-Tao(刘晓涛), CUI Jian-Zhong(崔建忠). Mater. Rev.(材料导报), 2005,3:47-51

    2. [2]

      [2] Sha G, Cerezo A. Acta Mater., 2004,52(15):4503-4516

    3. [3]

      [3] Lendvai J. Mater. Sci. Forum, 1996,217-222:43-56

    4. [4]

      [4] Stiller K, Warren P J, Hansen V, et al. Mater. Sci. Eng. A, 1999,A270:55-63

    5. [5]

      [5] Golovin Y I. Phys. Solid State, 2004,46:789-824

    6. [6]

      [6] Dong J, Zhang H J, Xu G, et al. Europhys. Lett., 2005,83: 27006(4Pages)

    7. [7]

      [7] De la cruz C, Huang Q, Lynn J, et al. Nature, 2008,453:899- 902

    8. [8]

      [8] Komura Y, Tokunaga K. Acta Crystallogr. B, 1980,B36:1548- 1554

    9. [9]

      [9] Kohn W, Sham L J. Phys. Rev. A, 1965,140:A1133-A1138

    10. [10]

      [10] Milman V, Winkler B, White J A, et al. Int. J. Quant. Chem., 2000,77:895-910

    11. [11]

      [11] Hohenberg P, Kohn W. Phys. Rev. B, 1964,136:B864-B871

    12. [12]

      [12] Mattsson A E, Schultz P A, Desjarlais M P, et al. Model Simul. Mater. Sci. Eng., 2005,13:R1-R31

    13. [13]

      [13] Perdew J P, Zunger A. Phys. Rev. B, 1981,23:5048-5079

    14. [14]

      [14] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77:3865-3868

    15. [15]

      [15] nderbilt D. Phys. Rev. B, 1990,41:7892-7895

    16. [16]

      [16] Mulliken R S. J. Chem. Phys., 1955,23:1841-1846

    17. [17]

      [17] LEI Xue-Ling(雷雪玲), ZHU Heng-Jiang(祝恒江), GE Gui- Xian(葛桂贤), et al. Acta Phys. Sin.(物理学报), 2008,9: 5491-5499

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    20. [20]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

Metrics
  • PDF Downloads(0)
  • Abstract views(979)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return