Citation: WANG Hong-Ming, ZHENG Rui, LI Gui-Rong, LI Pei-Si. First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2143-2151. doi: 10.11862/CJIC.2015.290 shu

First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase

  • Corresponding author: LI Gui-Rong, 
  • Received Date: 21 April 2015
    Available Online: 10 September 2015

    Fund Project: 国家自然科学基金(No.51371091,51174099)资助项目。 (No.51371091,51174099)

  • MgZn2 phase is the main reinforcement in the high strength-toughness aluminum alloy, such as Al-Zn-Mg-Cu (7××× series). These alloys can be strengthened by solution and aging heat treatment. The precipitation sequence is recognized as: supersaturated solute→GP area→metastable η' phase→stable η(MgZn2) phase. Therefore, it is important to know the quantum behavior and phase formation mechanism of MgZn2. But till to now, the concerned research has been rarely reported. Besides, the magnetic property of MgZn2 is also important when the aluminum alloy is processed in the presence of magnetic field. By using the first principles method, the electronic and magnetic properties of MgZn2 were calculated and analyzd in detail. The computing results on the band structure and density of state demonstrates that Zn-Mg bond is generated through the interaction of two sp hybrid state, which are from Zn4s-4p hybridized orbit and Mg3s-3p hybridized orbit separately. Especially nearby the Fermi level an intense interaction takes place between the Zn4p and Mg3p orbits. The Mulliken population distribution computation illustrates that the overlapped population distribution of Zn1-Mg or Zn2-Mg almost equals to zero. Here, it is noted that the Zn1 and Zn2 just means the Zn atoms located individually at the edge and the interior of lattice. The calculation outcome of electron density shows that the electron density distribution of Mg-Zn has an obvious locality. Combining these results with the electronegativity difference of Mg and Zn, it is regarded that the Zn-Mg is polar covalent bond. The difference of Zn1-Mg bond and Zn2-Mg bond is that the contribution of Zn24s orbit to the bond formation is higher than that of Zn14s orbit in -10~-6 eV, the contribution of Zn14s orbit to the bond formation is higher than that of Zn24s orbit in 2~5 eV. The population distribution also demonstrates that the overlapped population of Zn1-Zn1 is -1.15, which proves that the electrons are in the antibonding orbit; nevertheless, the population distribution of Zn2-Zn2 is 1.08 and the corresponding electrons are in the bonding orbital. The population distribution and electron density calculating results reveal that the Mg-Mg bond is covalent bond while the Zn1-Zn2 bond is metallic bond. Furthermore, the studies on the integrated spin density of state demonstrate that the MgZn2 phase shows paramagnetism, which stems mainly from the two unpaired electrons in the Zn1-Mg bond, and the paramagnetism of MgZn2 will make a magnetoplastic effect in Al-Zn-Mg-Cu (7××× series) high strength-toughness aluminum alloy in the presence of magnetic field.
  • 加载中
    1. [1]

      [1] LIU Xiao-Tao(刘晓涛), CUI Jian-Zhong(崔建忠). Mater. Rev.(材料导报), 2005,3:47-51

    2. [2]

      [2] Sha G, Cerezo A. Acta Mater., 2004,52(15):4503-4516

    3. [3]

      [3] Lendvai J. Mater. Sci. Forum, 1996,217-222:43-56

    4. [4]

      [4] Stiller K, Warren P J, Hansen V, et al. Mater. Sci. Eng. A, 1999,A270:55-63

    5. [5]

      [5] Golovin Y I. Phys. Solid State, 2004,46:789-824

    6. [6]

      [6] Dong J, Zhang H J, Xu G, et al. Europhys. Lett., 2005,83: 27006(4Pages)

    7. [7]

      [7] De la cruz C, Huang Q, Lynn J, et al. Nature, 2008,453:899- 902

    8. [8]

      [8] Komura Y, Tokunaga K. Acta Crystallogr. B, 1980,B36:1548- 1554

    9. [9]

      [9] Kohn W, Sham L J. Phys. Rev. A, 1965,140:A1133-A1138

    10. [10]

      [10] Milman V, Winkler B, White J A, et al. Int. J. Quant. Chem., 2000,77:895-910

    11. [11]

      [11] Hohenberg P, Kohn W. Phys. Rev. B, 1964,136:B864-B871

    12. [12]

      [12] Mattsson A E, Schultz P A, Desjarlais M P, et al. Model Simul. Mater. Sci. Eng., 2005,13:R1-R31

    13. [13]

      [13] Perdew J P, Zunger A. Phys. Rev. B, 1981,23:5048-5079

    14. [14]

      [14] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77:3865-3868

    15. [15]

      [15] nderbilt D. Phys. Rev. B, 1990,41:7892-7895

    16. [16]

      [16] Mulliken R S. J. Chem. Phys., 1955,23:1841-1846

    17. [17]

      [17] LEI Xue-Ling(雷雪玲), ZHU Heng-Jiang(祝恒江), GE Gui- Xian(葛桂贤), et al. Acta Phys. Sin.(物理学报), 2008,9: 5491-5499

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    10. [10]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    12. [12]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(1143)
  • HTML views(242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return