Citation: ZHANG Wei, TAO Hong-Xiu, WANG Qiu-Shi, ZHANG Li-Na, WANG Gui-Qiang. Preparation of Hollow Cu2ZnSnS4 Spheres via Solvothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2411-2417. doi: 10.11862/CJIC.2015.288 shu

Preparation of Hollow Cu2ZnSnS4 Spheres via Solvothermal Method

  • Corresponding author: WANG Gui-Qiang, 
  • Received Date: 15 July 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(No.61474009,11504028) (No.61474009,11504028)辽宁省教育厅科学技术研究项目(No.L2014448)资助。 (No.L2014448)

  • Hollow Cu2ZnSnS4 spheres were synthesized by a poly(ethylene glycol) (PEG) assisted solvothermal route, employing copper chloride, zinc nitrate, stannous chloride, and thiourea as precursors. The polyethylene glycol (PEG) acting as the template coordination agent plays an important role in the formation of the final product. The formation mechanism of the hollow Cu2ZnSnS4 spheres was also discussed. The microstructure and optical properties of the hollow spheres were characterized by X-ray diffraction (XRD), Raman spectrometer, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), selected area electron diffraction spectroscopy (SAED), and UV-Vis absorption spectroscopy. The results reveal that the hollow Cu2ZnSnS4 spheres are crystallized in the tetragonal structure with about 600 nm in size. The optical absorption data show band-gap energy (Eg) of 1.52 eV which is optimal for photovoltaic applications.
  • 加载中
    1. [1]

      [1] Wadia C, Alivisatos A P, Kammen D M. Environ. Sci. Technol., 2009,43:2072-2077

    2. [2]

      [2] Fernandes P A, Salome P M P, Cunha A F. J. Alloys Compd., 2011,509:7600-7606

    3. [3]

      [3] Guo Q, Ford G M, Yang W C, et al. J. Am. Chem. Soc., 2010,132:17384-17386

    4. [4]

      [4] Moholkar A V, Shinde S S, Babar A R, et al. J. Alloys Compd., 2011,509:7439-7446

    5. [5]

      [5] Chan C P, Lam H, Surya C. Sol. Energy Mater. Sol. Cells, 2010,94:207-211

    6. [6]

      [6] Fischereder A, Rath T, Haas W, et al. Chem. Mater., 2010,22:3399-3406

    7. [7]

      [7] WANG Xin-Chun(王信春), WANG Guang-Jun(王广君), PANG Shan(庞山), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2011,27(12):2437-2442

    8. [8]

      [8] Repinsl I, Contreras M A, Egaas B, et al. Prog. Photovolt.: Res. Appl., 2008,16:235-239

    9. [9]

      [9] DUAN Xue-Chen(段学臣), JIANG Bo(蒋波), CHENG Ya- Juan(程亚娟), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2011,27(2):293-297

    10. [10]

      [10] Scragg J J, Dale P J, Peter L M, et al. Phys. Stat. Sol. (B), 2008,245:1772-1778

    11. [11]

      [11] Zhang W, Zhang L N, Lu X D, et al. Chin. Auto. Congr., 2013 Chinese Automation Congress. Changsha:IEEE, 2013: 795-800

    12. [12]

      [12] Liu F Y, Zhang K, Wang B, et al. Sol. Energy Mater. Sol. Cells, 2010,94:2431-2434

    13. [13]

      [13] Oishi K, Saito G, Ebina K, et al. Thin Solid Films, 2008,517:1449-1452

    14. [14]

      [14] Pawar S M, Pawar B S, Moholkar A V, et al. Electrochim. Acta, 2010,55:4057-4061

    15. [15]

      [15] Kamoun N, Bouzouita H, Rezig B. Thin Solid Films, 2007,515:5949-5952

    16. [16]

      [16] Hillhouse H W, Beard M C. Colloid Interface Sci., 2009,14: 245-259

    17. [17]

      [17] Wu C H, Chen F, Lin S H, et al. J. Alloys Compd., 2011, 509:5783-5788

    18. [18]

      [18] Shi L, Pei C J, Xu Y M, et al. J. Am. Chem. Soc., 2011, 133:10328-10331

    19. [19]

      [19] ZHOU Chao(周超), ANG Dan(王丹), GAO Yan-Min (高延敏), Chinese J. Inorg. Chem. (无机化学学报), 2013, 29(11):2382-2386

    20. [20]

      [20] Shavel A, Arbiol J, Cabot A. J. Am. Chem. Soc., 2010,132: 4514-4515

    21. [21]

      [21] Zou C, Zhang L J, Lin D S, et al. Cryst. Eng. Comn., 2011,13:3310-3313

    22. [22]

      [22] Steinhagen C, Panthani M G, Akhavan V, et al. J. Am. Chem. Soc., 2009,131:12554-12555

    23. [23]

      [23] Chen H Y, Yu S M, Shin D W, et al. Nanoscale Res. Lett., 2010,5:217-223

    24. [24]

      [24] Wang Y, Gong H. J. Alloys Compd., 2011,509:9627-9630

    25. [25]

      [25] ZENG Xiao-Wei(曾小巍), ZHANG Yu-Hong(张玉红), LUO Cheng-cai(骆成才), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2005,21(10):1515-1519

    26. [26]

      [26] Song X F, Gao L. J. Phys. Chem. C, 2008,112:15229-15305

    27. [27]

      [27] Yang X F, Fu J X, Jin C J, et al. J. Am. Chem. Soc., 2010,132:14279-14287

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    5. [5]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Hui ZhangZijian ZhaoYajing WangKai NiYanfei WangLiang ZhuJianyun LiuXiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    13. [13]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Yuhan ZhengYunzhen JiaXuelei LangDazhong ZhongJinping LiQiang Zhao . Stabilizing Cu2+ in perovskite via A-site modulation for efficient CO2 electrocatalysis to CH4. Chinese Chemical Letters, 2025, 36(8): 111193-. doi: 10.1016/j.cclet.2025.111193

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Lianshun ZhangLan BaoTing SongShangying QiaoYifan LiuXianxiu XuJinhuan Dong . Cu-catalyzed biheterocyclization along with sulfonyl remote migration: Access to Marinoquinoline alkaloids and 4-sulfonyl pyrrolo[2,3-c]quinolines. Chinese Chemical Letters, 2025, 36(10): 110915-. doi: 10.1016/j.cclet.2025.110915

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(0)
  • Abstract views(510)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return