Citation: GOU Lei, ZHAO Kun, MAO Yi-Yang, XIE Rong, FAN Xiao-Yong, LI Dong-Lin, MA Shou-Long, TIAN Miao. Copolymer Template-Assisted Synthesis of Porous Li2FeSiO4@C/CNTs Nanocomposite as Cathode Material with High Rate Capability[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2401-2410. doi: 10.11862/CJIC.2015.286
-
Li2FeSiO4@C/CNTs (LFS@C/CNTs) nanocomposite was synthesized by a sol-gel method. A triblock copolymer P123 was used as the direction agent for nanopores and carbon source, and carbon nanotubes were used as conductive wires to further increase the conductivity of the material. The resulting LFS@C/CNTs nanocomposite possesses not only a nanoporous sponge-like structure for improving Li-ions transport by means of liquid electrolyte, but also a 3D self-bridged conduction hybrid network consisted of amorphous carbon coating and graphitized CNTs for electron fast transport that ultimately improves the high rate capability and cycling performance. As a result, the porous LFS@C/CNTs nanocomposite compared with nanoporous LFS@C exhibits a remarkable improvement in high-rate capability. The LFS@C/CNTs nanocomposite with 4wt% of CNTs delivers a specific discharge capacity of approximately 182 mAh·g-1 at 0.1C in the voltage window of 1.5~4.5 V, and the specific discharge capacity at 10C after 70 cycles maintains at 117 mA·h·g-1, which is more than two times that of LFS@C (55 mAh·g-1) as a cathode material for high power lithium ion battery.
-
-
[1]
[1] Nytn A, Abouimrane A, Armand M, et al. Electrochem. Commun., 2005,7(2):156-160
-
[2]
[2] Huang X B, Li X, Wang H Y, et al. Electrochim. Acta, 2010,55(24):7362-7366
-
[3]
[3] Wu X Z, Jiang X, Huo Q S, et al. Electrochim. Acta, 2012,80:50-55
-
[4]
[4] Deng C, Zhang S, Zhao G S, et al. J. Electrochem. Soc., 2013,160:A1457-A1464
-
[5]
[5] Dominko R. J. Power Sources, 2008,184(2):462-468
-
[6]
[6] Gong Z L, Li Y X, He G N, et al. Electrochem. Solid-State Lett., 2008,11(5):A60-A63
-
[7]
[7] Larsson P, Ahuja R, Nytn A, et al. Electrochem. Commun., 2006,8(5):797-800
-
[8]
[8] Bai J Y, Gong Z L, Lü D P, et al. J. Mater. Chem., 2012,22 (24):12128-12132
-
[9]
[9] Li D L, Xie R, Tian M, et al. J. Mater. Chem. A, 2014,2: 4375-4383
-
[10]
[10] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010,22(20):5754-5761
-
[11]
[11] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069
-
[12]
[12] Delacourt C, Poizot P, Levasseur S, et al. Solid-State Lett., 2006,9(7):A352-A355
-
[13]
[13] Zhu H, Wu X, Zan L, et al. Electrochim. Acta, 2014,117: 34-40
-
[14]
[14] Fan X Y, Li Y, Wang J J, et al. J. Alloys Compd., 2010,493:77-80
-
[15]
[15] Deng C, Zhang S, Yang S Y, et al. J. Power Sources, 2011,196(1):386-392
-
[16]
[16] Hao H, Wang J B, Liu J L, et al. J. Power Sources, 2012,210:397-401
-
[17]
[17] Dominko R, Conte D E, Hanzel D, et al. J. Power Sources, 2008,178(2):842-847
-
[18]
[18] Bindumadhavan K, Srivastava S K, Mahanty S. Chem. Comm., 2013,49:1823-1825
-
[19]
[19] Tang M, Yuan A, Zhao H, Xu J. J. Power Sources, 2013,235:5-13
-
[20]
[20] Li X, Qu M Z, Huai Y J, et al. Electrochim. Acta, 2010,55 (8):2978-2982
-
[21]
[21] Chen M, Du C Y, Song B, et al. J. Power Sources, 2013,223:100-106
-
[22]
[22] Zhou H T, Mari-Ann E, Fride V B. Solid State Ionics, 2012,225:585-589
-
[23]
[23] Sun X R, Li J J, Shi C S, et al. J. Power Sources, 2012,220: 264-268
-
[24]
[24] Peng G, Zhang L L, Yang X L, et al. J. Alloys Compd., 2013,570(5):1-6
-
[25]
[25] Zhao Y, Li J, Wang N, et al. J. Mater. Chem., 2012,22: 18797-18800
-
[26]
[26] Zhou H, Lou F, Vullum P E, et al. Nanotechnology, 2013,24 (43):435703-435713
-
[27]
[27] Nishimura S I, Hayase S, Kanno R, et al. J. Am. Chem. Soc., 2008,130(40):13212-13213
-
[28]
[28] Li D, Zhou H, Honma I, et al. Chem. Commun., 2005,41: 5187-5189
-
[29]
[29] Li D, Zhou H, Honma I. Nat. Mater., 2004,3:65-72
-
[30]
[30] Luo Y, Xu X, Zhang Y, et al. Adv. Energy Mater., 2014,14: 400107
-
[31]
[31] Li D L, Yong H T H, Xie R, et al. RSC Adv., 2014,4: 35541-35545
-
[32]
[32] Huang H, Yin S C, Kerr T, et al. Adv. Mater., 2002,14(21): 1525-1528
-
[33]
[33] Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc., 2003,125(2):326-327
-
[34]
[34] Li D L, Xie R, Tian M, et al. Nanoscale, 2014,6:3302-3308
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[5]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[13]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[14]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[17]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[18]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[19]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[20]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(279)
- HTML views(41)