Citation: GOU Lei, ZHAO Kun, MAO Yi-Yang, XIE Rong, FAN Xiao-Yong, LI Dong-Lin, MA Shou-Long, TIAN Miao. Copolymer Template-Assisted Synthesis of Porous Li2FeSiO4@C/CNTs Nanocomposite as Cathode Material with High Rate Capability[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2401-2410. doi: 10.11862/CJIC.2015.286 shu

Copolymer Template-Assisted Synthesis of Porous Li2FeSiO4@C/CNTs Nanocomposite as Cathode Material with High Rate Capability

  • Corresponding author: LI Dong-Lin, 
  • Received Date: 10 July 2015
    Available Online: 14 August 2015

    Fund Project: 国家自然科学基金(No.21073021,21473014,21103013) (No.21073021,21473014,21103013)教育部科技创新工程重大项目培育资金(No.708084) (No.708084)中央高校基础研究经费 (No.0009-2014G1311085)资助项目。 (No.0009-2014G1311085)

  • Li2FeSiO4@C/CNTs (LFS@C/CNTs) nanocomposite was synthesized by a sol-gel method. A triblock copolymer P123 was used as the direction agent for nanopores and carbon source, and carbon nanotubes were used as conductive wires to further increase the conductivity of the material. The resulting LFS@C/CNTs nanocomposite possesses not only a nanoporous sponge-like structure for improving Li-ions transport by means of liquid electrolyte, but also a 3D self-bridged conduction hybrid network consisted of amorphous carbon coating and graphitized CNTs for electron fast transport that ultimately improves the high rate capability and cycling performance. As a result, the porous LFS@C/CNTs nanocomposite compared with nanoporous LFS@C exhibits a remarkable improvement in high-rate capability. The LFS@C/CNTs nanocomposite with 4wt% of CNTs delivers a specific discharge capacity of approximately 182 mAh·g-1 at 0.1C in the voltage window of 1.5~4.5 V, and the specific discharge capacity at 10C after 70 cycles maintains at 117 mA·h·g-1, which is more than two times that of LFS@C (55 mAh·g-1) as a cathode material for high power lithium ion battery.
  • 加载中
    1. [1]

      [1] Nytn A, Abouimrane A, Armand M, et al. Electrochem. Commun., 2005,7(2):156-160

    2. [2]

      [2] Huang X B, Li X, Wang H Y, et al. Electrochim. Acta, 2010,55(24):7362-7366

    3. [3]

      [3] Wu X Z, Jiang X, Huo Q S, et al. Electrochim. Acta, 2012,80:50-55

    4. [4]

      [4] Deng C, Zhang S, Zhao G S, et al. J. Electrochem. Soc., 2013,160:A1457-A1464

    5. [5]

      [5] Dominko R. J. Power Sources, 2008,184(2):462-468

    6. [6]

      [6] Gong Z L, Li Y X, He G N, et al. Electrochem. Solid-State Lett., 2008,11(5):A60-A63

    7. [7]

      [7] Larsson P, Ahuja R, Nytn A, et al. Electrochem. Commun., 2006,8(5):797-800

    8. [8]

      [8] Bai J Y, Gong Z L, Lü D P, et al. J. Mater. Chem., 2012,22 (24):12128-12132

    9. [9]

      [9] Li D L, Xie R, Tian M, et al. J. Mater. Chem. A, 2014,2: 4375-4383

    10. [10]

      [10] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010,22(20):5754-5761

    11. [11]

      [11] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069

    12. [12]

      [12] Delacourt C, Poizot P, Levasseur S, et al. Solid-State Lett., 2006,9(7):A352-A355

    13. [13]

      [13] Zhu H, Wu X, Zan L, et al. Electrochim. Acta, 2014,117: 34-40

    14. [14]

      [14] Fan X Y, Li Y, Wang J J, et al. J. Alloys Compd., 2010,493:77-80

    15. [15]

      [15] Deng C, Zhang S, Yang S Y, et al. J. Power Sources, 2011,196(1):386-392

    16. [16]

      [16] Hao H, Wang J B, Liu J L, et al. J. Power Sources, 2012,210:397-401

    17. [17]

      [17] Dominko R, Conte D E, Hanzel D, et al. J. Power Sources, 2008,178(2):842-847

    18. [18]

      [18] Bindumadhavan K, Srivastava S K, Mahanty S. Chem. Comm., 2013,49:1823-1825

    19. [19]

      [19] Tang M, Yuan A, Zhao H, Xu J. J. Power Sources, 2013,235:5-13

    20. [20]

      [20] Li X, Qu M Z, Huai Y J, et al. Electrochim. Acta, 2010,55 (8):2978-2982

    21. [21]

      [21] Chen M, Du C Y, Song B, et al. J. Power Sources, 2013,223:100-106

    22. [22]

      [22] Zhou H T, Mari-Ann E, Fride V B. Solid State Ionics, 2012,225:585-589

    23. [23]

      [23] Sun X R, Li J J, Shi C S, et al. J. Power Sources, 2012,220: 264-268

    24. [24]

      [24] Peng G, Zhang L L, Yang X L, et al. J. Alloys Compd., 2013,570(5):1-6

    25. [25]

      [25] Zhao Y, Li J, Wang N, et al. J. Mater. Chem., 2012,22: 18797-18800

    26. [26]

      [26] Zhou H, Lou F, Vullum P E, et al. Nanotechnology, 2013,24 (43):435703-435713

    27. [27]

      [27] Nishimura S I, Hayase S, Kanno R, et al. J. Am. Chem. Soc., 2008,130(40):13212-13213

    28. [28]

      [28] Li D, Zhou H, Honma I, et al. Chem. Commun., 2005,41: 5187-5189

    29. [29]

      [29] Li D, Zhou H, Honma I. Nat. Mater., 2004,3:65-72

    30. [30]

      [30] Luo Y, Xu X, Zhang Y, et al. Adv. Energy Mater., 2014,14: 400107

    31. [31]

      [31] Li D L, Yong H T H, Xie R, et al. RSC Adv., 2014,4: 35541-35545

    32. [32]

      [32] Huang H, Yin S C, Kerr T, et al. Adv. Mater., 2002,14(21): 1525-1528

    33. [33]

      [33] Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc., 2003,125(2):326-327

    34. [34]

      [34] Li D L, Xie R, Tian M, et al. Nanoscale, 2014,6:3302-3308

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return