Citation: XIE Peng-Cheng, HUANG Jie. Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2197-2204. doi: 10.11862/CJIC.2015.279 shu

Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature

  • Corresponding author: XIE Peng-Cheng, 
  • Received Date: 29 May 2015
    Available Online: 12 August 2015

    Fund Project: 中国科学院广州地球化学研究所有机地球化学国家重点实验室开放基金(OGL-201111)资助项目。 (OGL-201111)

  • Ti1-xVxO2 films with dominant {211} facets were deposited by direct current reactive magnetron sputtering with Ti and Vtargets (99.99% purity) at room temperature. We study the composition, crystal structure and visible-light photocatalytic properties of the films as a function of power of Vtarget. The results showed that crystal phase of Ti1-xVxO2 films was anatase with (211) preferred orientation, but the films deposited at different power of Vtarget had different crystallinities. With the increase of power of Vtarget, the relative contents of Velement increased gradually, meanwhile, crystal grain and deposition rate also increased. In addition, the surface roughness of the film had a maximum value when the power of Vtarget was 150 W. The addition of Velement gives rise to the band gap of TiO2 films narrowing down. As a result, the optical absorption edge of the Ti1-xVxO2 films shifts towards visible-light zone, improving the visible-light photocatalytic activity of the films. When the power of Vtarget came to 150 W, the value of band gap of the Ti1-xVxO2 film was about 2.82 eV, and the film degraded ~80% RhBdyes after 2 h visible-light irradiation. This can be attributed to the synergistic effect of narrow band gap, high energy facet {211}, and high crystallinity.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95 (3):735-758

    3. [3]

      [3] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96

    4. [4]

      [4] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    5. [5]

      [5] Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012,112(11):5919-5948

    6. [6]

      [6] Cromer D T, Herrington K. J. Am. Chem. Soc., 1955,77(18): 4708-4709

    7. [7]

      [7] Bokhimi X, Morales A, Aguilar M, et al. Int. J. Hydrogen Energy, 2001,26(12):1279-1287

    8. [8]

      [8] QIN Wei(秦纬), LIU Jian-Jun(刘建军), ZUO Sheng-Li (左胜利), et al. J. Inorg. Mater. (无机材料学报), 2007,22 (5):931-936

    9. [9]

      [9] Sumita T, Otsuka H, Kubota H, et al. Nucl. Instrum. Methods Phys. Res., Sect. B, 1999,148(1-4):758-761

    10. [10]

      [10] Sato S. Chem. Phys. Lett., 1986,123(1/2):126-128

    11. [11]

      [11] Galinska A, Walendziewski J. Energy Fuels, 2005,19(3): 1143-1147

    12. [12]

      [12] Nowotny J, Sorrell C C, Bak T, et al. Sol. Energy, 2005,78 (5):593-602

    13. [13]

      [13] Yang H G, Sun C H, Qiao S Z, et al. Nature, 2008,453 (7195):638-641

    14. [14]

      [14] Han X G, Kuang Q, Jin M S, et al. J. Am. Chem. Soc., 2009,131(9):3152-3153

    15. [15]

      [15] Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010,114 (30):13118-13125

    16. [16]

      [16] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2009,9(6):3433-3440

    17. [17]

      [17] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2010,10(2):1057-1064

    18. [18]

      [18] Wang C, Hu Q Q, Huang J Q, et al. Int. J. Hydrogen Energy, 2014,39(5):1967-1971

    19. [19]

      [19] Romero L, Piccirillo C, Castro P M L, et al. Chem. Vap. Deposition, 2015,21(1/2/3):63-70

    20. [20]

      [20] Ali A, Ruzybayev I, Yassitepe E, et al. J. Phys. Chem. C, 2013,117(38):19517-19524

    21. [21]

      [21] Ren W J, Ai Z H, Jia F L, et al. Appl. Catal., B, 2007,69 (3/4):138-144

    22. [22]

      [22] Wang H, Lewis J P. J. Phys.: Condens. Matter., 2005,17(21): 209-213

    23. [23]

      [23] HE Jing(何静), JIANG Wei-Hui(江伟辉), YU Yun(于云), et al. J. Inorg. Mater. (无机材料学报), 2005,20(3):713-719

    24. [24]

      [24] Wang Y, Doren D J. Solid State Commun., 2005,136(3):142-146

    25. [25]

      [25] CHEN Xi-Ming(陈喜明), JIANG Xin(蒋新). J. Zhejiang Univ. (浙江大学学报), 2006,40(1):145-148

    26. [26]

      [26] LIU Huan(刘欢), GONG Shu-Ping(龚树萍), LIU Jian-Qiao (刘剑桥), et al. J. Func. Mater. (功能材料), 2011,42(11): 2017-2020

    27. [27]

      [27] ZHANG Xiao-Yong(张晓勇), CHAO Ming-Ju(晁明举), LIANG Er-Jun(梁二军), et al. J. Inorg. Mater. (无机材料学 报), 2009,24(1):34-38

    28. [28]

      [28] Weiser H B, Milligan W O. J. Phys. Chem., 1934,38(4):513-519

    29. [29]

      [29] Wen C Z, Jiang H B, Qiao S Z, et al. J. Mater. Chem., 2011,21(20):7052-7061

    30. [30]

      [30] Jeong B S, Norton D P, Budai J D, et al. Thin Solid Films, 2004,446(1):18-22

    31. [31]

      [31] Klug H P, Alexander L E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. New York: Wiley-Interscience, 1974:87

    32. [32]

      [32] LAI Fa-Chun(赖发春), LIN Li-Mei(林丽梅), QU Yan(瞿燕). Acta Photonica Sin. (光子学报), 2006,35(10):1551-1554

    33. [33]

      [33] Al-Ahmad A Y. Opt. Spectrosc., 2012,113(2):197-203

    34. [34]

      [34] Mardare D, Tasca M, Delibas M, et al. Appl. Surf. Sci., 2000,156(1/2/3/4):200-206

    35. [35]

      [35] Tang H, Prasad K, Sanjines R, et al. J. Appl. Phys., 1994,75(4):2042-2047

    36. [36]

      [36] Zheng J Y, Bao S H, Guo Y, et al. ACS Appl. Mater. Interfaces, 2014,6(8):5940-5946

    37. [37]

      [37] Asanuma T, Matsutani T, Liu C, et al. J. Appl. Phys., 2004, 95(11):6011

    38. [38]

      [38] Watanabe T, Takizawa T, Honda K. J. Phys. Chem., 1977,81(19):1845-1851

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    10. [10]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(306)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return