Citation: XIE Peng-Cheng, HUANG Jie. Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2197-2204. doi: 10.11862/CJIC.2015.279 shu

Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature

  • Corresponding author: XIE Peng-Cheng, 
  • Received Date: 29 May 2015
    Available Online: 12 August 2015

    Fund Project: 中国科学院广州地球化学研究所有机地球化学国家重点实验室开放基金(OGL-201111)资助项目。 (OGL-201111)

  • Ti1-xVxO2 films with dominant {211} facets were deposited by direct current reactive magnetron sputtering with Ti and Vtargets (99.99% purity) at room temperature. We study the composition, crystal structure and visible-light photocatalytic properties of the films as a function of power of Vtarget. The results showed that crystal phase of Ti1-xVxO2 films was anatase with (211) preferred orientation, but the films deposited at different power of Vtarget had different crystallinities. With the increase of power of Vtarget, the relative contents of Velement increased gradually, meanwhile, crystal grain and deposition rate also increased. In addition, the surface roughness of the film had a maximum value when the power of Vtarget was 150 W. The addition of Velement gives rise to the band gap of TiO2 films narrowing down. As a result, the optical absorption edge of the Ti1-xVxO2 films shifts towards visible-light zone, improving the visible-light photocatalytic activity of the films. When the power of Vtarget came to 150 W, the value of band gap of the Ti1-xVxO2 film was about 2.82 eV, and the film degraded ~80% RhBdyes after 2 h visible-light irradiation. This can be attributed to the synergistic effect of narrow band gap, high energy facet {211}, and high crystallinity.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95 (3):735-758

    3. [3]

      [3] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96

    4. [4]

      [4] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    5. [5]

      [5] Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012,112(11):5919-5948

    6. [6]

      [6] Cromer D T, Herrington K. J. Am. Chem. Soc., 1955,77(18): 4708-4709

    7. [7]

      [7] Bokhimi X, Morales A, Aguilar M, et al. Int. J. Hydrogen Energy, 2001,26(12):1279-1287

    8. [8]

      [8] QIN Wei(秦纬), LIU Jian-Jun(刘建军), ZUO Sheng-Li (左胜利), et al. J. Inorg. Mater. (无机材料学报), 2007,22 (5):931-936

    9. [9]

      [9] Sumita T, Otsuka H, Kubota H, et al. Nucl. Instrum. Methods Phys. Res., Sect. B, 1999,148(1-4):758-761

    10. [10]

      [10] Sato S. Chem. Phys. Lett., 1986,123(1/2):126-128

    11. [11]

      [11] Galinska A, Walendziewski J. Energy Fuels, 2005,19(3): 1143-1147

    12. [12]

      [12] Nowotny J, Sorrell C C, Bak T, et al. Sol. Energy, 2005,78 (5):593-602

    13. [13]

      [13] Yang H G, Sun C H, Qiao S Z, et al. Nature, 2008,453 (7195):638-641

    14. [14]

      [14] Han X G, Kuang Q, Jin M S, et al. J. Am. Chem. Soc., 2009,131(9):3152-3153

    15. [15]

      [15] Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010,114 (30):13118-13125

    16. [16]

      [16] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2009,9(6):3433-3440

    17. [17]

      [17] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2010,10(2):1057-1064

    18. [18]

      [18] Wang C, Hu Q Q, Huang J Q, et al. Int. J. Hydrogen Energy, 2014,39(5):1967-1971

    19. [19]

      [19] Romero L, Piccirillo C, Castro P M L, et al. Chem. Vap. Deposition, 2015,21(1/2/3):63-70

    20. [20]

      [20] Ali A, Ruzybayev I, Yassitepe E, et al. J. Phys. Chem. C, 2013,117(38):19517-19524

    21. [21]

      [21] Ren W J, Ai Z H, Jia F L, et al. Appl. Catal., B, 2007,69 (3/4):138-144

    22. [22]

      [22] Wang H, Lewis J P. J. Phys.: Condens. Matter., 2005,17(21): 209-213

    23. [23]

      [23] HE Jing(何静), JIANG Wei-Hui(江伟辉), YU Yun(于云), et al. J. Inorg. Mater. (无机材料学报), 2005,20(3):713-719

    24. [24]

      [24] Wang Y, Doren D J. Solid State Commun., 2005,136(3):142-146

    25. [25]

      [25] CHEN Xi-Ming(陈喜明), JIANG Xin(蒋新). J. Zhejiang Univ. (浙江大学学报), 2006,40(1):145-148

    26. [26]

      [26] LIU Huan(刘欢), GONG Shu-Ping(龚树萍), LIU Jian-Qiao (刘剑桥), et al. J. Func. Mater. (功能材料), 2011,42(11): 2017-2020

    27. [27]

      [27] ZHANG Xiao-Yong(张晓勇), CHAO Ming-Ju(晁明举), LIANG Er-Jun(梁二军), et al. J. Inorg. Mater. (无机材料学 报), 2009,24(1):34-38

    28. [28]

      [28] Weiser H B, Milligan W O. J. Phys. Chem., 1934,38(4):513-519

    29. [29]

      [29] Wen C Z, Jiang H B, Qiao S Z, et al. J. Mater. Chem., 2011,21(20):7052-7061

    30. [30]

      [30] Jeong B S, Norton D P, Budai J D, et al. Thin Solid Films, 2004,446(1):18-22

    31. [31]

      [31] Klug H P, Alexander L E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. New York: Wiley-Interscience, 1974:87

    32. [32]

      [32] LAI Fa-Chun(赖发春), LIN Li-Mei(林丽梅), QU Yan(瞿燕). Acta Photonica Sin. (光子学报), 2006,35(10):1551-1554

    33. [33]

      [33] Al-Ahmad A Y. Opt. Spectrosc., 2012,113(2):197-203

    34. [34]

      [34] Mardare D, Tasca M, Delibas M, et al. Appl. Surf. Sci., 2000,156(1/2/3/4):200-206

    35. [35]

      [35] Tang H, Prasad K, Sanjines R, et al. J. Appl. Phys., 1994,75(4):2042-2047

    36. [36]

      [36] Zheng J Y, Bao S H, Guo Y, et al. ACS Appl. Mater. Interfaces, 2014,6(8):5940-5946

    37. [37]

      [37] Asanuma T, Matsutani T, Liu C, et al. J. Appl. Phys., 2004, 95(11):6011

    38. [38]

      [38] Watanabe T, Takizawa T, Honda K. J. Phys. Chem., 1977,81(19):1845-1851

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(186)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return