Citation: ZHAO Ning-Ning, HE Cui-Cui, WANG Tong, AN Ting, ZHAO Feng-Qi, HU Rong-Zu, MA Hai-Xia. Nano-WO3: Preparation, Characterization and Effect on Thermal Decomposition of Hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(10): 1959-1965. doi: 10.11862/CJIC.2015.263 shu

Nano-WO3: Preparation, Characterization and Effect on Thermal Decomposition of Hexanitrohexaazaisowurtzitane

  • Corresponding author: MA Hai-Xia, 
  • Received Date: 13 January 2015
    Available Online: 16 July 2015

    Fund Project: 国家自然科学基金(No.21073141,21373161) (No.21073141,21373161)教育部新世纪优秀人才支持计划基金(No.12-1047) (No.12-1047)高等学校博士学科点专项科研基金(No.20126101110009) (No.20126101110009)燃烧与爆炸技术重点实验室基金(No.9140C3501041001)资助项目。 (No.9140C3501041001)

  • The cuboid-shaped WO3 nanoparticles were prepared by the hydrothermal method with controlling the amount of reactant and reaction time, then the as-prepared particles were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope-energy dispersive spectrometry (SEM-EDS). The Effects of WO3 powders on the thermal decomposition of hexanitrohexaazaisowur-tzitane (CL-20) were investigated by differential scanning calorimetry (DSC). The results show that the peak temperature of the decomposition and the activation energy of WO3/CL-20 have 2.95℃ and 7.74 kJ·mol-1 lower than that of CL-20, indicating that nano-WO3 could accelerate the thermal decomposition of CL-20.
  • 加载中
    1. [1]

      [1] Li X L, Lou T J, Sun X M, et al. Inorg. Chem., 2004,43(17):5442-5449

    2. [2]

      [2] WANG Chao(王超), XU You(许友), ZHANG Bing(张兵). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(7):1575-1581

    3. [3]

      [3] Gondal M A, Dastageer M A, Khalil A. Catal. Commun., 2009,11(3):214-219

    4. [4]

      [4] Baek Y, Yong K. J. Phys. Chem. C, 2007,111(3):1213-1218

    5. [5]

      [5] Wang Z, Sun P, Yang T, et al. Sensor Lett., 2013,11(2):423-427

    6. [6]

      [6] Zhang G, Guan W, Shen H, et al. Ind. Eng. Chem. Res., 2014,53(13):5443-5450

    7. [7]

      [7] Mwakikunga B W, Sideras-Haddad E, Forbes A, et al. Phys. Status Solidi A, 2008,205(1):150-154

    8. [8]

      [8] Mwakikunga B W, Forbes A, Sideras-Haddad E, et al. Nanoscale Res. Lett., 2010,5(2):389-397

    9. [9]

      [9] Yagi M, Maruyama S, Sone K, et al. J. Solid State Chem., 2008,181(1):175-182

    10. [10]

      [10] Lee S H, Deshpande R, Parilla P A, et al. Adv. Mater., 2006, 18(6):763-766

    11. [11]

      [11] Wang J, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2008, 112(37):14306-14312

    12. [12]

      [12] Wang J, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2009, 113(22):9655-9658

    13. [13]

      [13] Ou J Z, Balendhran S, Field M R, et al. Nanoscale, 2012,4(19):5980-5988

    14. [14]

      [14] WEI Xiao-Lan(魏小兰), SHEN Pei-Kang(沈培康). Sci. China Ser. B(中国科学:B辑), 2005,35(4):291-295

    15. [15]

      [15] YU Xian-Feng(于宪峰). Chin. J. Expls. Propell.(火炸药学报), 2004,27(3):78-80

    16. [16]

      [16] LIU Xin-Jin(刘新锦), LUO Chao-Jun(罗朝军), HUANG Tie-Gang(黄铁钢). J. Xiamen Univ.(厦门大学学报), 1996,35(5):750-754

    17. [17]

      [17] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), GAO Hong-Xu(高红旭). Chin. J. Mater. Eng.(材料工程), 2011,11:23-28,34

    18. [18]

      [18] LIU Zi-Ru(刘子如). Thermal Analyses for Energetic Materials (含能材料热分析). Beijing:National Defense Industry Press, 2008:21-22

    19. [19]

      [19] YAN Qi-Long(严启龙), LI Xiao-Jiang(李笑江), LIAO Lin-Quan(廖林泉), et al. Chin. Energ. Mater.(含能材料), 2008, 16(3):309-314

    20. [20]

      [20] Kissinger H E. Anal. Chem., 1957,29(11):1702-1706

    21. [21]

      [21] Ozawa T B. Chem. Soc. Jpn., 1965,38(11):1881-1886

    22. [22]

      [22] HU Rong-Zu(胡荣祖), SHI Qi-Zhen(史启祯). Thermal Analysis Kinetics(热分析动力学). Beijing:Science Press, 2001:127-131

    23. [23]

      [23] Hu R Z, Yang Z Q, Liang Y J. Thermochim Acta, 1988,123:135

    24. [24]

      [24] Volk F. Propell. Explos. Pyrot., 1985,10:139-146

    25. [25]

      [25] Williams G K, Palopoli S F, Brill T B. Combust. Flame, 1994,98:197-204

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    5. [5]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    6. [6]

      Mengxiu LiJiahui MaoJiangfeng NiLiang Li . Three birds with one stone: modification of Li5FeO4 with thermal induction of Lewis acid. Acta Physico-Chimica Sinica, 2026, 42(4): 100189-0. doi: 10.1016/j.actphy.2025.100189

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Zehua Zhao Xiaoyan An Jinrong Xu Ling Yang Hao Zhao Zhongyun Wu . Independent Development and Application of Calorimetric Experiment Data Acquisition and Processing Software. University Chemistry, 2025, 40(11): 402-408. doi: 10.12461/PKU.DXHX202505045

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    12. [12]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Jiaqi Chen Liang Chen Xiaocui Wei Yankai Wang Yahui Chang Xinghao Ji Haoyu Yang Yue Sun Yawen Wang Xiufeng Shi Xu Wu . Digital Empowerment for Foundational Excellence: A Digitally Enhanced Coordination Titration Experiment of Heating Pack Component Analysis. University Chemistry, 2026, 41(1): 382-393. doi: 10.12461/PKU.DXHX202506008

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(0)
  • Abstract views(926)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return