Citation: ZHANG Ning, LIU Yong-Chang, CHEN Cheng-Cheng, TAO Zhan-Liang, CHEN Jun. Research on Electrode Materials for Sodium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1739-1750. doi: 10.11862/CJIC.2015.258 shu

Research on Electrode Materials for Sodium-Ion Batteries

  • Corresponding author: CHEN Jun, 
  • Received Date: 2 June 2015
    Available Online: 19 July 2015

    Fund Project: 国家科技部973计划(No.2011CB935900) (No.2011CB935900)国家自然科学基金项目(No.21231005)资助和中央高校基本科研业务费资助项目。 (No.21231005)

  • Sodium ion batteries (SIBs) have recently attracted much attention because of the abundance, wide distribution and low cost of Na source. However, Na+ is heavier and larger than that of Li+, limiting the insertion of and extraction of Na+ into and from the host materials. Thus, developing the advanced electrodes materials is the key point for SIBs. In this review, we summarize the research development of selected electrode materials of SIBs. This should shed light on the R & D of advanced electrode materials of SIBs.
  • 加载中
    1. [1]

      [1] Yabuuchi N, Kubota K, Dahbi M, et al. Chem. Rev., 2014, 114:11636-11682

    2. [2]

      [2] LI Hui(李慧), WU Chuan(吴川), WU Feng(吴峰), et al. Acta Chim. Sinica(化学学报), 2014,72:21-29

    3. [3]

      [3] Pan H, Hu Y, Chen L. Energy Environ. Sci., 2013,6:2338-2360

    4. [4]

      [4] Cheng F, Liang J, Tao Z, et al. Adv. Mater., 2011,23:1695-1715

    5. [5]

      [5] Kundu D, Talaie E, Duffort V, et al. Angew. Chem. Int. Ed., 2015,54:3431-3448

    6. [6]

      [6] Delmas C, Braconnier J J, Fouassier C, et al. Solid State Ionics, 1981,3-4:165-169

    7. [7]

      [7] D'Arienzo M, Ruffo R, Scotti R, et al. Phys. Chem. Chem. Phys., 2012,14:5945-5952

    8. [8]

      [8] Shacklette L W, Jow T R Townsend L. J. Electrochem. Soc., 1988,135:2669-2674

    9. [9]

      [9] Berthelot R, Carlier D, Delmas C. Nat. Mater., 2011,10:74-80

    10. [10]

      [10] Su D, Wang C, Ahn H j, et al. Chem. Eur. J., 2013,19:10884-10889

    11. [11]

      [11] Billaud J, Clément R J, Armstrong A R, et al. J. Am. Chem. Soc., 2014,136:17243-17248

    12. [12]

      [12] Guo S, Yu H, Jian Z, et al. ChemSusChem, 2014,7:2115-2119

    13. [13]

      [13] Yabuuchi N, Yoshida H, Komaba S. Electrochemistry, 2012, 80:716-719

    14. [14]

      [14] Vassilaras P, Ma X, Li X, et al. J. Electrochem. Soc., 2013, 160:A207-A211

    15. [15]

      [15] Ding J J, Zhou Y N, Sun Q, et al. Electrochem. Commun., 2012,22:85-88

    16. [16]

      [16] Liu H, Zhou H, Chen L, et al. J. Power Sources, 2011,196:814-819

    17. [17]

      [17] Oh S M, Myung S T, Yoon C S, et al. Nano Lett., 2014,14:1620-1626

    18. [18]

      [18] Yabuuchi N, Kajiyama M, Iwatate J, et al. Nat. Mater., 2012,11:512-517

    19. [19]

      [19] Kalluri S, Seng K, Pang W, et al. ACS Appl. Mater. Interfaces, 2014,6:8953-8958

    20. [20]

      [20] Parant J P, Olazcuaga R, Devalette M, et al. J. Solid State Chem., 1971,3:1-11

    21. [21]

      [21] Sauvage F, Laffont L, Tarascon J M, et al. Inorg. Chem., 2007,46:3289-3294

    22. [22]

      [22] Cao Y, Xiao L, Wang W, et al. Adv. Mater., 2011,23:3155-3160

    23. [23]

      [23] Guo S, Yu H, Liu D, et al. Chem. Commun., 2014,50:7998-8001

    24. [24]

      [24] Lee K T, Ramesh T N, Nan F, et al. Chem. Mater., 2011,23:3593-3600

    25. [25]

      [25] Zhu Y, Xu Y, Liu Y, et al. Nanoscale, 2013,5:780-787

    26. [26]

      [26] Kim J, Seo D H, Kim H, et al. Energy Environ. Sci., 2015, 8:540-545

    27. [27]

      [27] Li S, Dong Y, Xu L, et al. Adv. Mater., 2014,26:3545-3553

    28. [28]

      [28] Duan W, Zhu Z, Li H, et al. J. Mater. Chem. A, 2014,2:8668-8675

    29. [29]

      [29] Saravanan K, Mason C W, Rudola A, et al. Adv. Energy Mater., 2013,3:444-450

    30. [30]

      [30] Barker J, Saidi M Y, Swoyer J L. Electrochem. Solid-State Lett., 2003,6:A1-A4

    31. [31]

      [31] Lu Y, Zhang S, Li Y, et al. J. Power Sources, 2014,247:770-777

    32. [32]

      [32] Park Y U, Seo D H, Kwon H S, et al. J. Am. Chem. Soc., 2013,135:13870-13878

    33. [33]

      [33] ZHANG Chuan-Xiang(张传香), HE Jian-Ping(何建平), ZHAO Gui-Wang(赵桂网) et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23:649-654

    34. [34]

      [34] Ellis B L, Makahnouk W R M, Makimura Y, et al. Nat. Mater., 2007,6:749-753

    35. [35]

      [35] Zou H, Li S, Wu X, et al. ECS Electrochem. Lett., 2015,4:A53-A55

    36. [36]

      [36] Barpanda P, Ye T, Nishimura S I, et al. Electrochem. Commun., 2012,24:116-119

    37. [37]

      [37] Barpanda P, Avdeev M, Ling C D, et al. Inorg. Chem., 2013,52:395-401

    38. [38]

      [38] Barpanda P, Ye T, Avdeev M, et al. J. Mater. Chem. A, 2013,1:4194-4197

    39. [39]

      [39] QIAN Jiang-Feng(钱江峰), ZHOU Min(周敏), CAO Yu-Liang(曹余良), et al. J. Electrochem.(电化学), 2012,18:108-112

    40. [40]

      [40] Lu Y, Wang L, Cheng J, et al. Chem. Commun., 2012,48:6544-6546

    41. [41]

      [41] Wang S, Wang L, Zhang K, et al. Nano Lett., 2013,13:4404-4409

    42. [42]

      [42] Zhu Z, Li H, Liang J, et al. Chem. Commun., 2015,51:1446-1448

    43. [43]

      [43] Guo C, Zhang K, Zhao Q, et al. Chem. Commun., 2015,51:10244-10247

    44. [44]

      [44] Wang S, Wang L, Zhu Z, et al. Angew. Chem. Int. Ed., 2014,53:5892-5896

    45. [45]

      [45] Zhao R, Zhu L, Cao Y, et al. Electrochem. Commun., 2012, 21:36-38

    46. [46]

      [46] Komaba S, Murata W, Ishikawa T, et al. Adv. Funct. Mater., 2011,21:3859-3867

    47. [47]

      [47] Cao Y, Xiao L, Sushko M L, et al. Nano Lett., 2012,12:3783-3787

    48. [48]

      [48] Yan Y, Yin Y X, Guo Y G, et al. Adv. Energy Mater., 2014, 4:1301584

    49. [49]

      [49] Wang Y, Yu X, Xu S, et al. Nat. Commun., 2013,4:2365

    50. [50]

      [50] Zhang Y, Guo L, Yang S. Chem. Commun., 2014,50:14029-14032

    51. [51]

      [51] Senguttuvan P, Rousse G, Seznec V, et al. Chem. Mater., 2011,23:4109-4111

    52. [52]

      [52] Kim Y, Ha K H, Oh S M, et al. Chem. Eur. J., 2014,20:11980-11992

    53. [53]

      [53] JIN Yi(金翼), SUN Xin(孙信), YU Yan(余彦), et al. Process. Chem.(化学进展), 2014,26:582-591

    54. [54]

      [54] Zhu H, Jia Z, Chen Y, et al. Nano Lett., 2013,13:3093-3100

    55. [55]

      [55] Zhu Y, Han X, Xu Y, et al. ACS Nano, 2013,7:6378-6386

    56. [56]

      [56] Liu Y, Zhang N, Jiao L, et al. Adv. Funct. Mater., 2015,25:214-220

    57. [57]

      [57] Ji L, Gu M, Shao Y, et al. Adv. Mater., 2014,26:2901-2908

    58. [58]

      [58] Qian J, Wu X, Cao Y, et al. Angew. Chem. Int. Ed., 2013, 52:4633-4636

    59. [59]

      [59] Kim Y, Park Y, Choi A, et al. Adv. Mater., 2013,25:3045-3049

    60. [60]

      [60] Li W J, Chou S L, Wang J Z, et al. Nano Lett., 2013,13:5480-5484

    61. [61]

      [61] Zhang N, Han X, Liu Y, et al. Adv. Energy Mater., 2015,5:1401123

    62. [62]

      [62] Wang L, Zhang K, Hu Z, et al. Nano Res., 2014,7:199-208

    63. [63]

      [63] Lu Y, Zhang N, Zhao Q, et al. Nanoscale, 2015,7:2770-2776

    64. [64]

      [64] Pei L, Jin Q, Zhu Z, et al. Nano Res., 2014,8:184-192

    65. [65]

      [65] Hu Z, Zhu Z, Cheng F, et al. Energy Environ. Sci., 2015,8:1309-1316

    66. [66]

      [66] Hu Z, Wang L, Zhang K, et al. Angew. Chem. Int. Ed., 2014,53:12794-12798

    67. [67]

      [67] Yu D, Prikhodchenko V, Mason C, et al. Nat. Commun., 2013,4:2922

    68. [68]

      [68] Zhu C, Mu X, van Aken P A, et al. Angew. Chem. Int. Ed., 2014,53:2152-2156

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

Metrics
  • PDF Downloads(1)
  • Abstract views(624)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return