Citation: ZHANG Ning, LIU Yong-Chang, CHEN Cheng-Cheng, TAO Zhan-Liang, CHEN Jun. Research on Electrode Materials for Sodium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1739-1750. doi: 10.11862/CJIC.2015.258 shu

Research on Electrode Materials for Sodium-Ion Batteries

  • Corresponding author: CHEN Jun, 
  • Received Date: 2 June 2015
    Available Online: 19 July 2015

    Fund Project: 国家科技部973计划(No.2011CB935900) (No.2011CB935900)国家自然科学基金项目(No.21231005)资助和中央高校基本科研业务费资助项目。 (No.21231005)

  • Sodium ion batteries (SIBs) have recently attracted much attention because of the abundance, wide distribution and low cost of Na source. However, Na+ is heavier and larger than that of Li+, limiting the insertion of and extraction of Na+ into and from the host materials. Thus, developing the advanced electrodes materials is the key point for SIBs. In this review, we summarize the research development of selected electrode materials of SIBs. This should shed light on the R & D of advanced electrode materials of SIBs.
  • 加载中
    1. [1]

      [1] Yabuuchi N, Kubota K, Dahbi M, et al. Chem. Rev., 2014, 114:11636-11682

    2. [2]

      [2] LI Hui(李慧), WU Chuan(吴川), WU Feng(吴峰), et al. Acta Chim. Sinica(化学学报), 2014,72:21-29

    3. [3]

      [3] Pan H, Hu Y, Chen L. Energy Environ. Sci., 2013,6:2338-2360

    4. [4]

      [4] Cheng F, Liang J, Tao Z, et al. Adv. Mater., 2011,23:1695-1715

    5. [5]

      [5] Kundu D, Talaie E, Duffort V, et al. Angew. Chem. Int. Ed., 2015,54:3431-3448

    6. [6]

      [6] Delmas C, Braconnier J J, Fouassier C, et al. Solid State Ionics, 1981,3-4:165-169

    7. [7]

      [7] D'Arienzo M, Ruffo R, Scotti R, et al. Phys. Chem. Chem. Phys., 2012,14:5945-5952

    8. [8]

      [8] Shacklette L W, Jow T R Townsend L. J. Electrochem. Soc., 1988,135:2669-2674

    9. [9]

      [9] Berthelot R, Carlier D, Delmas C. Nat. Mater., 2011,10:74-80

    10. [10]

      [10] Su D, Wang C, Ahn H j, et al. Chem. Eur. J., 2013,19:10884-10889

    11. [11]

      [11] Billaud J, Clément R J, Armstrong A R, et al. J. Am. Chem. Soc., 2014,136:17243-17248

    12. [12]

      [12] Guo S, Yu H, Jian Z, et al. ChemSusChem, 2014,7:2115-2119

    13. [13]

      [13] Yabuuchi N, Yoshida H, Komaba S. Electrochemistry, 2012, 80:716-719

    14. [14]

      [14] Vassilaras P, Ma X, Li X, et al. J. Electrochem. Soc., 2013, 160:A207-A211

    15. [15]

      [15] Ding J J, Zhou Y N, Sun Q, et al. Electrochem. Commun., 2012,22:85-88

    16. [16]

      [16] Liu H, Zhou H, Chen L, et al. J. Power Sources, 2011,196:814-819

    17. [17]

      [17] Oh S M, Myung S T, Yoon C S, et al. Nano Lett., 2014,14:1620-1626

    18. [18]

      [18] Yabuuchi N, Kajiyama M, Iwatate J, et al. Nat. Mater., 2012,11:512-517

    19. [19]

      [19] Kalluri S, Seng K, Pang W, et al. ACS Appl. Mater. Interfaces, 2014,6:8953-8958

    20. [20]

      [20] Parant J P, Olazcuaga R, Devalette M, et al. J. Solid State Chem., 1971,3:1-11

    21. [21]

      [21] Sauvage F, Laffont L, Tarascon J M, et al. Inorg. Chem., 2007,46:3289-3294

    22. [22]

      [22] Cao Y, Xiao L, Wang W, et al. Adv. Mater., 2011,23:3155-3160

    23. [23]

      [23] Guo S, Yu H, Liu D, et al. Chem. Commun., 2014,50:7998-8001

    24. [24]

      [24] Lee K T, Ramesh T N, Nan F, et al. Chem. Mater., 2011,23:3593-3600

    25. [25]

      [25] Zhu Y, Xu Y, Liu Y, et al. Nanoscale, 2013,5:780-787

    26. [26]

      [26] Kim J, Seo D H, Kim H, et al. Energy Environ. Sci., 2015, 8:540-545

    27. [27]

      [27] Li S, Dong Y, Xu L, et al. Adv. Mater., 2014,26:3545-3553

    28. [28]

      [28] Duan W, Zhu Z, Li H, et al. J. Mater. Chem. A, 2014,2:8668-8675

    29. [29]

      [29] Saravanan K, Mason C W, Rudola A, et al. Adv. Energy Mater., 2013,3:444-450

    30. [30]

      [30] Barker J, Saidi M Y, Swoyer J L. Electrochem. Solid-State Lett., 2003,6:A1-A4

    31. [31]

      [31] Lu Y, Zhang S, Li Y, et al. J. Power Sources, 2014,247:770-777

    32. [32]

      [32] Park Y U, Seo D H, Kwon H S, et al. J. Am. Chem. Soc., 2013,135:13870-13878

    33. [33]

      [33] ZHANG Chuan-Xiang(张传香), HE Jian-Ping(何建平), ZHAO Gui-Wang(赵桂网) et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23:649-654

    34. [34]

      [34] Ellis B L, Makahnouk W R M, Makimura Y, et al. Nat. Mater., 2007,6:749-753

    35. [35]

      [35] Zou H, Li S, Wu X, et al. ECS Electrochem. Lett., 2015,4:A53-A55

    36. [36]

      [36] Barpanda P, Ye T, Nishimura S I, et al. Electrochem. Commun., 2012,24:116-119

    37. [37]

      [37] Barpanda P, Avdeev M, Ling C D, et al. Inorg. Chem., 2013,52:395-401

    38. [38]

      [38] Barpanda P, Ye T, Avdeev M, et al. J. Mater. Chem. A, 2013,1:4194-4197

    39. [39]

      [39] QIAN Jiang-Feng(钱江峰), ZHOU Min(周敏), CAO Yu-Liang(曹余良), et al. J. Electrochem.(电化学), 2012,18:108-112

    40. [40]

      [40] Lu Y, Wang L, Cheng J, et al. Chem. Commun., 2012,48:6544-6546

    41. [41]

      [41] Wang S, Wang L, Zhang K, et al. Nano Lett., 2013,13:4404-4409

    42. [42]

      [42] Zhu Z, Li H, Liang J, et al. Chem. Commun., 2015,51:1446-1448

    43. [43]

      [43] Guo C, Zhang K, Zhao Q, et al. Chem. Commun., 2015,51:10244-10247

    44. [44]

      [44] Wang S, Wang L, Zhu Z, et al. Angew. Chem. Int. Ed., 2014,53:5892-5896

    45. [45]

      [45] Zhao R, Zhu L, Cao Y, et al. Electrochem. Commun., 2012, 21:36-38

    46. [46]

      [46] Komaba S, Murata W, Ishikawa T, et al. Adv. Funct. Mater., 2011,21:3859-3867

    47. [47]

      [47] Cao Y, Xiao L, Sushko M L, et al. Nano Lett., 2012,12:3783-3787

    48. [48]

      [48] Yan Y, Yin Y X, Guo Y G, et al. Adv. Energy Mater., 2014, 4:1301584

    49. [49]

      [49] Wang Y, Yu X, Xu S, et al. Nat. Commun., 2013,4:2365

    50. [50]

      [50] Zhang Y, Guo L, Yang S. Chem. Commun., 2014,50:14029-14032

    51. [51]

      [51] Senguttuvan P, Rousse G, Seznec V, et al. Chem. Mater., 2011,23:4109-4111

    52. [52]

      [52] Kim Y, Ha K H, Oh S M, et al. Chem. Eur. J., 2014,20:11980-11992

    53. [53]

      [53] JIN Yi(金翼), SUN Xin(孙信), YU Yan(余彦), et al. Process. Chem.(化学进展), 2014,26:582-591

    54. [54]

      [54] Zhu H, Jia Z, Chen Y, et al. Nano Lett., 2013,13:3093-3100

    55. [55]

      [55] Zhu Y, Han X, Xu Y, et al. ACS Nano, 2013,7:6378-6386

    56. [56]

      [56] Liu Y, Zhang N, Jiao L, et al. Adv. Funct. Mater., 2015,25:214-220

    57. [57]

      [57] Ji L, Gu M, Shao Y, et al. Adv. Mater., 2014,26:2901-2908

    58. [58]

      [58] Qian J, Wu X, Cao Y, et al. Angew. Chem. Int. Ed., 2013, 52:4633-4636

    59. [59]

      [59] Kim Y, Park Y, Choi A, et al. Adv. Mater., 2013,25:3045-3049

    60. [60]

      [60] Li W J, Chou S L, Wang J Z, et al. Nano Lett., 2013,13:5480-5484

    61. [61]

      [61] Zhang N, Han X, Liu Y, et al. Adv. Energy Mater., 2015,5:1401123

    62. [62]

      [62] Wang L, Zhang K, Hu Z, et al. Nano Res., 2014,7:199-208

    63. [63]

      [63] Lu Y, Zhang N, Zhao Q, et al. Nanoscale, 2015,7:2770-2776

    64. [64]

      [64] Pei L, Jin Q, Zhu Z, et al. Nano Res., 2014,8:184-192

    65. [65]

      [65] Hu Z, Zhu Z, Cheng F, et al. Energy Environ. Sci., 2015,8:1309-1316

    66. [66]

      [66] Hu Z, Wang L, Zhang K, et al. Angew. Chem. Int. Ed., 2014,53:12794-12798

    67. [67]

      [67] Yu D, Prikhodchenko V, Mason C, et al. Nat. Commun., 2013,4:2922

    68. [68]

      [68] Zhu C, Mu X, van Aken P A, et al. Angew. Chem. Int. Ed., 2014,53:2152-2156

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    11. [11]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(1)
  • Abstract views(1161)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return