Citation: LU Xin-Rong, ZHAO Ying, LIU Jian, LI Cheng-Hui, YOU Xiao-Zeng. Modulation of the Structure and Property of ABX3 Type Perovskite Photovoltaic Material[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1678-1686. doi: 10.11862/CJIC.2015.257 shu

Modulation of the Structure and Property of ABX3 Type Perovskite Photovoltaic Material

  • Corresponding author: LI Cheng-Hui,  YOU Xiao-Zeng, 
  • Received Date: 20 May 2015
    Available Online: 20 July 2015

    Fund Project: 国家重点基础研究发展规划项目(No.2011CB933300) (No.2011CB933300)国家教育部博士点专项基金(No.20120091130002) (No.20120091130002)江苏省科技支撑计划项目(No.BE2014147-2)等资助。 (No.BE2014147-2)

  • Perovskite solar cells have been receiving intensive attentions and become a hot research topic in solar cells, due to their high photo-to-electric conversion efficiency, low manufacturing cost and simple fabrication process. In perovskite solar cell, the inorganic-organic hybrid ABX3 material functions as light absorbing layer as well as charge carrier transporting material. Therefore, the properties of ABX3 will directly affect the performance of perovskite solar cell. In this paper, we review on the present methods to tune the structure and properties of inorganic-organic hybrid ABX3 type perovskite photovoltaic material.
  • 加载中
    1. [1]

      [1] Green M A, Ho-Baillie A, Snaith H J. Nat. Photonics, 2014,8(7):506-514

    2. [2]

      [2] Hodes G. Science, 2013,342(6156):317-318

    3. [3]

      [3] Kim H-S, Im S H, Park N-G. J. Phys. Chem. C, 2014,118(11):5615-5625

    4. [4]

      [4] Liu J, Wu Y, Qin C, et al. Energy Environ. Sci., 2014,7(9):2963-2967

    5. [5]

      [5] Kojima A, Teshima K, Shirai Y, et al. J. Am. Chem. Soc., 2009,131(17):6050-6051

    6. [6]

      [6] Kim H S, Lee C R, Im J H, et al. Sci. Rep., 2012,2:591-597

    7. [7]

      [7] Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012,338(6107):643-647

    8. [8]

      [8] Burschka J, Pellet N, Moon S J, et al. Nature, 2013,499(7458):316-319

    9. [9]

      [9] Liu M, Johnston M B, Snaith H J. Nature, 2013,501(7467):395-398

    10. [10]

      [10] Gao P, Grätzel M, Nazeeruddin M K. Energy Environ. Sci., 2014,7(8):2448-2463

    11. [11]

      [11] Zhao Y, Zhu K. J. Phys. Chem. Lett., 2014,5(23):4175-4186

    12. [12]

      [12] Xing G, Mathews N, Sun S, et al. Science, 2013,342(6156):344-347

    13. [13]

      [13] Baikie T, Fang Y, Kadro J M, et al. J. Mater. Chem. A, 2013,1(18):5628

    14. [14]

      [14] Mosconi E, Amat A, Nazeeruddin M K, et al. J. Phys. Chem. C, 2013,117(27):13902-13913

    15. [15]

      [15] Shockley W, Queisser H J. J. Appl. Phys., 1961,32(3):510-519

    16. [16]

      [16] Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156):341-344

    17. [17]

      [17] Mailoa J P, Bailie C D, Johlin E C, et al. Appl. Phys. Lett., 2015,106(12):121105

    18. [18]

      [18] Loper P, Niesen B, Soo-Jin M, et al. IEEE J. Photovolt., 2014,4(6):1545-1551

    19. [19]

      [19] YOU Xiao-Zeng(游效曾). Molecular-Based Materials-Opto-Electronic Functional Compounds(分子材料-光电功能化合物). Beijing:Science Press, 2014.

    20. [20]

      [20] Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013,52(15):9019-9038

    21. [21]

      [21] Li C, Lu X, Ding W, et al. Acta Cryst. Sect. B, 2008,64(6):702-707

    22. [22]

      [22] Eperon G E, Stranks S D, Menelaou C, et al. Energy Environ. Sci., 2014,7(3):982

    23. [23]

      [23] Pang S, Hu H, Zhang J, et al. Chem. Mater., 2014,26(3):1485-1491

    24. [24]

      [24] Koh T M, Fu K, Fang Y, et al. J. Phys. Chem. C, 2014,118(30):16458-16462

    25. [25]

      [25] Im J-H, Chung J, Kim S-J, et al. Nanoscale Res. Lett., 2012,7(1):1-7

    26. [26]

      [26] McKinnon N K, Reeves D C, Akabas M H. J. Gen. Physiol., 2011,138(4):453-466

    27. [27]

      [27] Lee J W, Seol D J, Cho A N, et al. Adv. Mater., 2014,26(29):4991-4998

    28. [28]

      [28] Pellet N, Gao P, Gregori G, et al. Angew. Chem. Int. Ed., 2014,53(12):3151-3157

    29. [29]

      [29] Jeon N J, Noh J H, Yang W S, et al. Nature, 2015,517(7535):476-480

    30. [30]

      [30] Chung I, Song J H, Im J, et al. J. Am. Chem. Soc., 2012, 134(20):8579-8587

    31. [31]

      [31] Zhou Y, Garces H F, Senturk B S, et al. Mater. Lett., 2013,110:127-129

    32. [32]

      [32] Chung I, Lee B, He J, et al. Nature, 2012,485(7399):486-489

    33. [33]

      [33] Shum K, Chen Z, Qureshi J, et al. Appl. Phys. Lett., 2010, 96(22):221903

    34. [34]

      [34] Chen Z, Yu C, Shum K, et al. J. Lumin., 2012,132(2):345-349

    35. [35]

      [35] Kumar M H, Dharani S, Leong W L, et al. Adv. Mater., 2014,26(41):7122-7127

    36. [36]

      [36] Choi H, Jeong J, Kim H-B, et al. Nano Energy, 2014,7:80-85

    37. [37]

      [37] Knutson J L, Martin J D, Mitzi D B. Inorg. Chem., 2005,44(13):4699-4705

    38. [38]

      [38] Mitzi D B, Wang S, Feild C A, et al. Science, 1995,267(5203):1473-1476

    39. [39]

      [39] Mitzi D B, Feild C A, Harrison W T A, et al. Nature, 1994, 369(6480):467-469

    40. [40]

      [40] Thiele G, Rotter H W, Schmid K D. Z. Anorg. Allg. Chem., 1987,545(2):148-156

    41. [41]

      [41] Mitzi D B. Chem. Mater., 1996,8(3):791-800

    42. [42]

      [42] Hao F, Stoumpos C C, Cao D H, et al. Nat. Photonics, 2014, 8(6):489-494

    43. [43]

      [43] Hao F, Stoumpos C C, Chang R P H, et al. J. Am. Chem. Soc., 2014,136(22):8094-8099

    44. [44]

      [44] Stoumpos C C, Fraser L, Clark D J, et al. J. Am. Chem. Soc., 2015,137(21):6804-6819

    45. [45]

      [45] Ogomi Y, Morita A, Tsukamoto S, et al. J. Phys. Chem. Lett., 2014,5(6):1004-1011

    46. [46]

      [46] Hayatullah, Murtaza G, Muhammad S, et al. Acta Phys. Pol. A, 2013,124(1):102-107

    47. [47]

      [47] Onoda-Yamamuro N, Matsuo T, Suga H. J. Phys. Chem. Solids, 1992,53(7):935-939

    48. [48]

      [48] Kulkarni S A, Baikie T, Boix P P, et al. J. Mater. Chem. A, 2014,2(24):9221-9225

    49. [49]

      [49] Tanaka K, Takahashi T, Ban T, et al. Solid State Commun., 2003,127(9/10):619-623

    50. [50]

      [50] Im J H, Lee C R, Lee J W, et al. Nanoscale, 2011,3(10):4088-4093

    51. [51]

      [51] Calabrese J, Jones N L, Harlow R L, et al. J. Am. Chem. Soc., 1991,113(6):2328-2330

    52. [52]

      [52] Stranks S D, Eperon G E, Grancini G, et al. Science, 2013,342(6156):341-344

    53. [53]

      [53] Colella S, Mosconi E, Fedeli P, et al. Chem. Mater., 2013, 25(22):4613-4618

    54. [54]

      [54] Qiu J, Qiu Y, Yan K, et al. Nanoscale, 2013,5(8):3245-3248

    55. [55]

      [55] Zhao Y, Zhu K. J. Am. Chem. Soc., 2014,136(35):12241-12244

    56. [56]

      [56] Poglitsch A, Weber D. J. Chem. Phys., 1987,87(11):6373-6378

    57. [57]

      [57] Noh J H, Im S H, Heo J H, et al. Nano Lett., 2013,13(4):1764-1769

    58. [58]

      [58] Edri E, Kirmayer S, Kulbak M, et al. J. Phys. Chem. Lett., 2014,5(3):429-433

    59. [59]

      [59] Jiang Q, Rebollar D, Gong J, et al. Angew. Chem. Int. Ed., 2015,127(26):7727-7730

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return