Citation: WU Xiao-Feng, YUAN Long, HUANG Ke-Ke, FENG Shou-Hua. Memristive Effects in Inorganic Solid Materials[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1726-1738. doi: 10.11862/CJIC.2015.254 shu

Memristive Effects in Inorganic Solid Materials

  • Corresponding author: FENG Shou-Hua, 
  • Received Date: 16 June 2015
    Available Online: 30 July 2015

    Fund Project: 国家自然科学基金(No.21427802,21131002,21201075)资助项目。 (No.21427802,21131002,21201075)

  • Crystal defects are fundamental issues that define the physical and chemical properties in inorganic solid state chemistry. Memristive effects, which are mainly controlled by defects migration in solid state, will bring new revolution to the future electronic information industry. In this review, recent progress of memrisive effect in inorganic solid state materials was summarized. Main mechanism and material types are discussed in detail. These phenomena are highly related to atomic-scale p-n junction in manganite. This review indicates that defect transport mechanism study in electric field is an very important aspects in memristive applications.
  • 加载中
    1. [1]

      [1] Ralph K, Paolo L, Xhirnov V. Proc. IEEE, 2012,100:1720-1749

    2. [2]

      [2] Williams R. Memristors and Memristive Systems. New York:Springer, 2014:195-401

    3. [3]

      [3] Jo S, Chang T, Ebong I, et al. Nano Lett., 2010,10:1297-1301

    4. [4]

      [4] Chua L. IEEE Trans. Circuit Theory, 1971,18:507-519

    5. [5]

      [5] Tour J, He T. Nature, 2008,453:42-43

    6. [6]

      [6] Strukov D, Snider G, Stewart D, et al. Nature, 2008,453:80-83

    7. [7]

      [7] Biolek D, Biolek Z, Biolkova V. Electron. Lett., 2011,47:1385-1387

    8. [8]

      [8] Kim S, Du C, Sheridan P, et al. Nano Lett., 2015,15:2203-2211

    9. [9]

      [9] Kim K, Gaba S, Wheeler D, et al. Nano Lett., 2012,12:389-395

    10. [10]

      [10] Thomas A. J. Phys. D:Appl. Phys., 2013,46:093001

    11. [11]

      [11] Kuzum D, Yu S, Wong H. Nanotechnology, 2013,24:382001

    12. [12]

      [12] Gao B, Bi Y, Chen H, et al. ACS Nano, 2014,8:6998-7004

    13. [13]

      [13] Prezioso M, Merrikh F, Hoskins B, et al. Nature, 2015,521:61-64

    14. [14]

      [14] Nili H, Walia S, Kandjani A, et al. Adv. Funct. Mater., 2015,25:3172-3182

    15. [15]

      [15] JIA Lin-Nan (贾林楠), HUANG An-Ping(黄安平), ZHENG Xiao-Hu(郑晓虎), et al. Acta Phys. Sin.(物理学报), 2012, 61(21):217306

    16. [16]

      [16] Valov I, Linn E, Tappertzhofen S, et al. Nat. Commun., 2013, 4:1771

    17. [17]

      [17] Hu S, Wu S, Jia W, et al. Nanosci. Nanotechnol. Lett., 2014, 6:729-757

    18. [18]

      [18] Yang J, Pickett M, Li X, et al. Nat. Nanotechnol., 2008,3:429-433

    19. [19]

      [19] Kwon D, Kim K, Jang J, et al. Nat. Nanotechnol., 2010,5:148-153

    20. [20]

      [20] Strachan J, Pickett M, Yang J, et al. Adv. Mater., 2010,22:3573-3577

    21. [21]

      [21] Chen J, Hsin C, Huang C, et al. Nano Lett., 2013,13:3671-3677

    22. [22]

      [22] Yang Y, Lu W. Nanoscale, 2013,5:10076-10092

    23. [23]

      [23] Yang Y, Gao P, Gaba S, et al. Nat. Commun., 2012,3:732

    24. [24]

      [24] Liu Q, Dou C, Wang Y, et al. Appl. Phys. Lett., 2009,95:023501

    25. [25]

      [25] Liu Q, Sun J, Lv H, et al. Adv. Mater., 2012,24:1844-1849

    26. [26]

      [26] Guan W, Liu M, Long S, et al. Appl. Phys. Lett., 2008,93:223506

    27. [27]

      [27] Liu D, Cheng H, Zhu X, et al. ACS Appl. Mater. Inter., 2013,5:11258-11264

    28. [28]

      [28] LIU Dong-Qing(刘东青), CHENG Hai-Feng (程海峰), ZHU Xuan(朱玄), et al. Acta Phys. Sin.(物理学报), 2014,63(18):187301

    29. [29]

      [29] Liu Q, Long S, Lv H, et al. ACS Nano, 2010,4:6162-6168

    30. [30]

      [30] Schindler C, Valov I, Waser R. Phys. Chem. Chem. Phys., 2009,11:5974-5979

    31. [31]

      [31] Waser R, Dittmann R, Staikov G, et al. Adv. Mater., 2009, 21:2632-2663

    32. [32]

      [32] Kim S, Choi S, Lee J, et al. ACS Nano, 2014,8:10262-10269

    33. [33]

      [33] Chua L. Appl. Phys. A, 2011,102:765-783

    34. [34]

      [34] Shyam P, Maheshwar P, Hyongsuk K, et al. IEEE Trans. Circuits. Syst., 2013,60:3008-3021

    35. [35]

      [35] Chua L, Sun M. Proc. IEEE, 1976,64:209-223

    36. [36]

      [36] Chua L. Semicond. Sci. Tech., 2014,29:104001

    37. [37]

      [37] Chanthbouala A, Garcia V, Cherifi R, et al. Nat. Mater., 2012,11:860-864

    38. [38]

      [38] Kim D, Lu H, Ryu S, et al. Nano Lett., 2012,12:5697-5702

    39. [39]

      [39] Garcia V, Bibes M. Nat. Commun., 2014,5:4289

    40. [40]

      [40] Cassinerio M, Ciocchini N, Lelmini D, Adv. Mater., 2013, 25:5975-5980

    41. [41]

      [41] Wright C, Hosseini P, Diosdado J. Adv. Funct. Mater., 2013, 23:2248-2254

    42. [42]

      [42] Ielmini D, Bruchhaus R, Waser R. Phase Transit., 2011,84:570-602

    43. [43]

      [43] Yang J, Inoue I, Mikolajick T, et al. MRS Bull., 2012,37:131-137

    44. [44]

      [44] Locatelli N, Cros V, Grollier J. Nat. Mater., 2014,13:11-20

    45. [45]

      [45] Pershin Y, Ventra M. Phys. Rev. B, 2008,78:1133091-1133094

    46. [46]

      [46] Seok J, Kim I, Ziegler M, et al. RSC Adv., 2013,3:3169-3183

    47. [47]

      [47] Shen A, Chen C, Kim K, et al. ACS Nano, 2013,7:6117-6122

    48. [48]

      [48] Chen X, Jia C, Chen Y, et al. J. Phys. D:Appl. Phys., 2014, 47:365102

    49. [49]

      [49] Driscoll T, Kim H, Chae B, et al. Appl. Phys. Lett., 2009, 95:043503

    50. [50]

      [50] Raeis H, Lee J. ACS Nano, 2015,9:419-426

    51. [51]

      [51] Kim Y, Lee C, Shim I, et al. Adv. Mater., 2010,22:5140-5144

    52. [52]

      [52] Choi K, Ali J, Doh Y. Jpn. J. Appl. Phys., 2015,54:035103

    53. [53]

      [53] Berzina T, Erokhina S, Camorani P, et al. ACS Appl. Mater. Inter., 2009,1:2115-2118

    54. [54]

      [54] Awais M, Choi K. Jpn. J. Appl. Phys., 2013,52:05DA05

    55. [55]

      [55] Hota M, Bera M, Kundu B, et al. Adv. Funct. Mater., 2012, 22:4493-4499

    56. [56]

      [56] Chu H, Chiu S, Sung C, et al. Nano Lett., 2014,14:1026-1031

    57. [57]

      [57] Yoon S, Warren S, Grzybowski B. Angew. Chem. Int. Ed., 2014,126:4526-4530

    58. [58]

      [58] Pan F, Gao S, Chen C, et al. Mater. Sci. Eng. R-Rep., 2014, 83:1-59

    59. [59]

      [59] Kim K, Lee S, Kim S, et al. Adv. Funct. Mater., 2015,25:1527-1534

    60. [60]

      [60] Syu Y, Chang T, Lou J, et al. Appl. Phys. Lett., 2013,102:172903

    61. [61]

      [61] Liu P, Lin C, Manekkathodi A, et al. Nano Energy, 2015, 15:362-368

    62. [62]

      [62] Chen C, Gao S, Tang G, et al. ACS Appl. Mater. Inter., 2013,5:1793-1799

    63. [63]

      [63] Johnson S, Sundararajan A, Hunley D P, et al. Nanotechnology, 2010,21:125204

    64. [64]

      [64] Kim T, Jang E, Lee N, et al. Nano Lett., 2009,9:2229-2233

    65. [65]

      [65] O'Kelly C, Fairfield J, Boland J. ACS Nano, 2014,8:11724-11729

    66. [66]

      [66] Liang K, Huang C, Lai C, et al. ACS Appl. Mater. Inter., 2014,6:16537-16544

    67. [67]

      [67] Hong S, Choi T, Jeon J, et al. Adv Mater., 2013,25:2339-2343

    68. [68]

      [68] Bae S, Lee S, Koo H, et al. Adv. Mater., 2013,25:5098-5103

    69. [69]

      [69] Chen S, Chang T, Chen S, et al. Solid. State. Electron., 2011,62:40-43

    70. [70]

      [70] Yang M, Park J, Ko T, et al. Appl. Phys. Lett., 2009,95:042105

    71. [71]

      [71] Chen Y, Chen B, Gao B, et al. Appl. Phys. Lett., 2010,97:262112

    72. [72]

      [72] Gao X, Guo H, Xia Y, et al. Thin Solid Films, 2010,519:450-452

    73. [73]

      [73] Luo Y, Zhao D, Zhao Y, et al. Nanoscale, 2015,7:642-649

    74. [74]

      [74] Huang C, Huang J, Lin S, et al. ACS Nano, 2012,6:8407-8414

    75. [75]

      [75] Ismail M, Ahmed E, Rana A M, et al. Thin Solid Films, 2015,583:95-101

    76. [76]

      [76] Mondal S, Chen H, Her J, et al. Appl. Phys. Lett., 2012, 101:083506

    77. [77]

      [77] Pan T, Lu C, Mondal S, et al. IEEE Trans. Nanotechnol., 2012,11:1040-1046

    78. [78]

      [78] Zhou Q, Zhai J. Phys. Status Solidi A, 2014,211:173-179

    79. [79]

      [79] Choi B J, Torrezan A C, Norris K J, et al. Nano Lett., 2013, 13:3213-3217

    80. [80]

      [80] Xia Q, Robinett W, Cumbie M, et al. Nano Lett., 2009,9:3640-3645

    81. [81]

      [81] Huang H, Shih W, Lai C. Appl. Phys. Lett., 2010,96:193505

    82. [82]

      [82] Zhu W, Chen T, Ming Y, et al. IEEE Trans. Electron Devices, 2012,59:2363-2367

    83. [83]

      [83] Yang J, Chang T, Huang J, et al. Thin Solid Films, 2013, 529:200-204

    84. [84]

      [84] Shaposhnikov A, Perevalov T, Gritsenko V, et al. Appl. Phys. Lett., 2012,100:243506

    85. [85]

      [85] Wang S, Lee D, Huang T, et al. Nanotechnology, 2010,21:495201

    86. [86]

      [86] Grishin A, Velichko A, Jalalian A. Appl. Phys. Lett., 2013, 103:053111

    87. [87]

      [87] Arita M, Kaji H, Fujii T, et al. Thin Solid Films, 2012,520:4762-4767

    88. [88]

      [88] Nagashima K, Yanagida T, Oka K, et al. Appl. Phys. Lett., 2009,94:242902

    89. [89]

      [89] Tulina N, Borisenko I, Ionov A, et al. Solid State Commun., 2010,150:2089-2092

    90. [90]

      [90] Liang L, Li K, Xiao C, et al. J. Am. Chem. Soc., 2015,137:3102-3108

    91. [91]

      [91] Ahn Y, Ho L, Hwan K, et al. J. Appl. Phys., 2012,112:114105

    92. [92]

      [92] Kiazadeh A, Gomes H, da Costa A, et al. Thin Solid Films, 2012,522:407-411

    93. [93]

      [93] Hu Z, Li Q, Li M, et al. Appl. Phys. Lett., 2013,102:102901

    94. [94]

      [94] Hu W, Chen X, Wu G, et al. Appl. Phys. Lett., 2012,101:063501

    95. [95]

      [95] Dong H, Zhang X, Zhao D, et al. Nanoscale, 2012,4:2571-2574

    96. [96]

      [96] Huang J, Yen W, Lin S, et al. J. Mater. Chem. C, 2014,2:4401-4405

    97. [97]

      [97] Wang Z, Xu H, Li X, et al. Adv. Funct. Mater., 2012,22:2759-2765

    98. [98]

      [98] Tsai Y, Chang T, Huang W, et al. Appl. Phys. Lett., 2011, 99:092106

    99. [99]

      [99] Zhu X, Ong C, Xu X, et al. Sci. Rep., 2013,3:1084

    100. [100]

      [100] Hasan M, Dong R, Choi H, et al. Appl. Phys. Lett., 2008, 92:202102

    101. [101]

      [101] Nili H, Walia S, Balendhran S, et al. Adv. Funct. Mater., 2014,24:6741-6750

    102. [102]

      [102] Takagi H, Hwang H. Science, 2010,327:1601-1602

    103. [103]

      [103] Geresdi A, Csontos M, Gubicza A, et al. Nanoscale, 2014, 6:2613-2617

    104. [104]

      [104] Gubicza A, Csontos M, Halbritter A, et al. Nanoscale, 2015, 7:4394-4399

    105. [105]

      [105] Mou N, Tabib M. Appl. Surf. Sci., 2015,340:138-142

    106. [106]

      [106] Sangwan V, Jariwala D, Kim I, et al. Nat. Nanotechnol, 2015,10:403-406

    107. [107]

      [107] Xu X, Yin Z, Xu C, et al. Appl. Phys. Lett., 2014,104:033504

    108. [108]

      [108] Soni R, Meuffels P, Kohlstedt H, et al. Appl. Phys. Lett., 2009,94:123503

    109. [109]

      [109] Choi S, Kim K, Park G, et al. IEEE Electron Device Lett., 2011,32:375-377

    110. [110]

      [110] Li Y, Zhong Y, Zhang J, et al. Appl. Phys. Lett., 2013,103:043501

    111. [111]

      [111] Li Y, Zhong Y, Xu L, et al. Sci. Rep., 2013,3:16191-16197

    112. [112]

      [112] Kozicki M, Park M, Mitkova M. IEEE Trans. Nanotechnol., 2005,4:331-338

    113. [113]

      [113] Chen C, Yang Y, Zeng F, et al. Appl. Phys. Lett., 2010,97:083502

    114. [114]

      [114] Kim H, An H, Hong S, et al. Phys. Status Solidi A, 2013, 210:1822-1827

    115. [115]

      [115] Emboras A, Goykhman I, Desiatov B, et al. Nano Lett., 2013,13:6151-6155

    116. [116]

      [116] Zhuge F, Dai W, He C L, et al. Appl. Phys. Lett., 2010,96:3163505

    117. [117]

      [117] Tappertzhofen S, Valov I, Waser R. Nanotechnology, 2012, 23:6

    118. [118]

      [118] Batra A, Darancet P, Chen Q, et al. Nano Lett., 2013,13:6233-6237

    119. [119]

      [119] Fuechsle M, Miwa J, Mahapatra S, et al. Nat. Nanotechnol., 2012,7:242-246

    120. [120]

      [120] Feng S, Xu R. Acc. Chem. Res., 2001,34:239-247

    121. [121]

      [121] Feng S, Yuan H, Shi Z, et al. J. Mater. Sci., 2008,43:2131-2137

    122. [122]

      [122] Huang K, Chu X, Yuan L, et al. Chem. Commun., 2014, 50:9200-9203

    123. [123]

      [123] Huang K, Chu X, Feng W, et al. Chem. Eng. J., 2014,244:27-32

    124. [124]

      [124] Coey J, Viret M, von Molnár S. Adv. Phys., 2009,58:571-697

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    8. [8]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    11. [11]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(355)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return