Citation: WU Xiao-Feng, YUAN Long, HUANG Ke-Ke, FENG Shou-Hua. Memristive Effects in Inorganic Solid Materials[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1726-1738. doi: 10.11862/CJIC.2015.254
-
Crystal defects are fundamental issues that define the physical and chemical properties in inorganic solid state chemistry. Memristive effects, which are mainly controlled by defects migration in solid state, will bring new revolution to the future electronic information industry. In this review, recent progress of memrisive effect in inorganic solid state materials was summarized. Main mechanism and material types are discussed in detail. These phenomena are highly related to atomic-scale p-n junction in manganite. This review indicates that defect transport mechanism study in electric field is an very important aspects in memristive applications.
-
-
[1]
[1] Ralph K, Paolo L, Xhirnov V. Proc. IEEE, 2012,100:1720-1749
-
[2]
[2] Williams R. Memristors and Memristive Systems. New York:Springer, 2014:195-401
-
[3]
[3] Jo S, Chang T, Ebong I, et al. Nano Lett., 2010,10:1297-1301
-
[4]
[4] Chua L. IEEE Trans. Circuit Theory, 1971,18:507-519
-
[5]
[5] Tour J, He T. Nature, 2008,453:42-43
-
[6]
[6] Strukov D, Snider G, Stewart D, et al. Nature, 2008,453:80-83
-
[7]
[7] Biolek D, Biolek Z, Biolkova V. Electron. Lett., 2011,47:1385-1387
-
[8]
[8] Kim S, Du C, Sheridan P, et al. Nano Lett., 2015,15:2203-2211
-
[9]
[9] Kim K, Gaba S, Wheeler D, et al. Nano Lett., 2012,12:389-395
-
[10]
[10] Thomas A. J. Phys. D:Appl. Phys., 2013,46:093001
-
[11]
[11] Kuzum D, Yu S, Wong H. Nanotechnology, 2013,24:382001
-
[12]
[12] Gao B, Bi Y, Chen H, et al. ACS Nano, 2014,8:6998-7004
-
[13]
[13] Prezioso M, Merrikh F, Hoskins B, et al. Nature, 2015,521:61-64
-
[14]
[14] Nili H, Walia S, Kandjani A, et al. Adv. Funct. Mater., 2015,25:3172-3182
-
[15]
[15] JIA Lin-Nan (贾林楠), HUANG An-Ping(黄安平), ZHENG Xiao-Hu(郑晓虎), et al. Acta Phys. Sin.(物理学报), 2012, 61(21):217306
-
[16]
[16] Valov I, Linn E, Tappertzhofen S, et al. Nat. Commun., 2013, 4:1771
-
[17]
[17] Hu S, Wu S, Jia W, et al. Nanosci. Nanotechnol. Lett., 2014, 6:729-757
-
[18]
[18] Yang J, Pickett M, Li X, et al. Nat. Nanotechnol., 2008,3:429-433
-
[19]
[19] Kwon D, Kim K, Jang J, et al. Nat. Nanotechnol., 2010,5:148-153
-
[20]
[20] Strachan J, Pickett M, Yang J, et al. Adv. Mater., 2010,22:3573-3577
-
[21]
[21] Chen J, Hsin C, Huang C, et al. Nano Lett., 2013,13:3671-3677
-
[22]
[22] Yang Y, Lu W. Nanoscale, 2013,5:10076-10092
-
[23]
[23] Yang Y, Gao P, Gaba S, et al. Nat. Commun., 2012,3:732
-
[24]
[24] Liu Q, Dou C, Wang Y, et al. Appl. Phys. Lett., 2009,95:023501
-
[25]
[25] Liu Q, Sun J, Lv H, et al. Adv. Mater., 2012,24:1844-1849
-
[26]
[26] Guan W, Liu M, Long S, et al. Appl. Phys. Lett., 2008,93:223506
-
[27]
[27] Liu D, Cheng H, Zhu X, et al. ACS Appl. Mater. Inter., 2013,5:11258-11264
-
[28]
[28] LIU Dong-Qing(刘东青), CHENG Hai-Feng (程海峰), ZHU Xuan(朱玄), et al. Acta Phys. Sin.(物理学报), 2014,63(18):187301
-
[29]
[29] Liu Q, Long S, Lv H, et al. ACS Nano, 2010,4:6162-6168
-
[30]
[30] Schindler C, Valov I, Waser R. Phys. Chem. Chem. Phys., 2009,11:5974-5979
-
[31]
[31] Waser R, Dittmann R, Staikov G, et al. Adv. Mater., 2009, 21:2632-2663
-
[32]
[32] Kim S, Choi S, Lee J, et al. ACS Nano, 2014,8:10262-10269
-
[33]
[33] Chua L. Appl. Phys. A, 2011,102:765-783
-
[34]
[34] Shyam P, Maheshwar P, Hyongsuk K, et al. IEEE Trans. Circuits. Syst., 2013,60:3008-3021
-
[35]
[35] Chua L, Sun M. Proc. IEEE, 1976,64:209-223
-
[36]
[36] Chua L. Semicond. Sci. Tech., 2014,29:104001
-
[37]
[37] Chanthbouala A, Garcia V, Cherifi R, et al. Nat. Mater., 2012,11:860-864
-
[38]
[38] Kim D, Lu H, Ryu S, et al. Nano Lett., 2012,12:5697-5702
-
[39]
[39] Garcia V, Bibes M. Nat. Commun., 2014,5:4289
-
[40]
[40] Cassinerio M, Ciocchini N, Lelmini D, Adv. Mater., 2013, 25:5975-5980
-
[41]
[41] Wright C, Hosseini P, Diosdado J. Adv. Funct. Mater., 2013, 23:2248-2254
-
[42]
[42] Ielmini D, Bruchhaus R, Waser R. Phase Transit., 2011,84:570-602
-
[43]
[43] Yang J, Inoue I, Mikolajick T, et al. MRS Bull., 2012,37:131-137
-
[44]
[44] Locatelli N, Cros V, Grollier J. Nat. Mater., 2014,13:11-20
-
[45]
[45] Pershin Y, Ventra M. Phys. Rev. B, 2008,78:1133091-1133094
-
[46]
[46] Seok J, Kim I, Ziegler M, et al. RSC Adv., 2013,3:3169-3183
-
[47]
[47] Shen A, Chen C, Kim K, et al. ACS Nano, 2013,7:6117-6122
-
[48]
[48] Chen X, Jia C, Chen Y, et al. J. Phys. D:Appl. Phys., 2014, 47:365102
-
[49]
[49] Driscoll T, Kim H, Chae B, et al. Appl. Phys. Lett., 2009, 95:043503
-
[50]
[50] Raeis H, Lee J. ACS Nano, 2015,9:419-426
-
[51]
[51] Kim Y, Lee C, Shim I, et al. Adv. Mater., 2010,22:5140-5144
-
[52]
[52] Choi K, Ali J, Doh Y. Jpn. J. Appl. Phys., 2015,54:035103
-
[53]
[53] Berzina T, Erokhina S, Camorani P, et al. ACS Appl. Mater. Inter., 2009,1:2115-2118
-
[54]
[54] Awais M, Choi K. Jpn. J. Appl. Phys., 2013,52:05DA05
-
[55]
[55] Hota M, Bera M, Kundu B, et al. Adv. Funct. Mater., 2012, 22:4493-4499
-
[56]
[56] Chu H, Chiu S, Sung C, et al. Nano Lett., 2014,14:1026-1031
-
[57]
[57] Yoon S, Warren S, Grzybowski B. Angew. Chem. Int. Ed., 2014,126:4526-4530
-
[58]
[58] Pan F, Gao S, Chen C, et al. Mater. Sci. Eng. R-Rep., 2014, 83:1-59
-
[59]
[59] Kim K, Lee S, Kim S, et al. Adv. Funct. Mater., 2015,25:1527-1534
-
[60]
[60] Syu Y, Chang T, Lou J, et al. Appl. Phys. Lett., 2013,102:172903
-
[61]
[61] Liu P, Lin C, Manekkathodi A, et al. Nano Energy, 2015, 15:362-368
-
[62]
[62] Chen C, Gao S, Tang G, et al. ACS Appl. Mater. Inter., 2013,5:1793-1799
-
[63]
[63] Johnson S, Sundararajan A, Hunley D P, et al. Nanotechnology, 2010,21:125204
-
[64]
[64] Kim T, Jang E, Lee N, et al. Nano Lett., 2009,9:2229-2233
-
[65]
[65] O'Kelly C, Fairfield J, Boland J. ACS Nano, 2014,8:11724-11729
-
[66]
[66] Liang K, Huang C, Lai C, et al. ACS Appl. Mater. Inter., 2014,6:16537-16544
-
[67]
[67] Hong S, Choi T, Jeon J, et al. Adv Mater., 2013,25:2339-2343
-
[68]
[68] Bae S, Lee S, Koo H, et al. Adv. Mater., 2013,25:5098-5103
-
[69]
[69] Chen S, Chang T, Chen S, et al. Solid. State. Electron., 2011,62:40-43
-
[70]
[70] Yang M, Park J, Ko T, et al. Appl. Phys. Lett., 2009,95:042105
-
[71]
[71] Chen Y, Chen B, Gao B, et al. Appl. Phys. Lett., 2010,97:262112
-
[72]
[72] Gao X, Guo H, Xia Y, et al. Thin Solid Films, 2010,519:450-452
-
[73]
[73] Luo Y, Zhao D, Zhao Y, et al. Nanoscale, 2015,7:642-649
-
[74]
[74] Huang C, Huang J, Lin S, et al. ACS Nano, 2012,6:8407-8414
-
[75]
[75] Ismail M, Ahmed E, Rana A M, et al. Thin Solid Films, 2015,583:95-101
-
[76]
[76] Mondal S, Chen H, Her J, et al. Appl. Phys. Lett., 2012, 101:083506
-
[77]
[77] Pan T, Lu C, Mondal S, et al. IEEE Trans. Nanotechnol., 2012,11:1040-1046
-
[78]
[78] Zhou Q, Zhai J. Phys. Status Solidi A, 2014,211:173-179
-
[79]
[79] Choi B J, Torrezan A C, Norris K J, et al. Nano Lett., 2013, 13:3213-3217
-
[80]
[80] Xia Q, Robinett W, Cumbie M, et al. Nano Lett., 2009,9:3640-3645
-
[81]
[81] Huang H, Shih W, Lai C. Appl. Phys. Lett., 2010,96:193505
-
[82]
[82] Zhu W, Chen T, Ming Y, et al. IEEE Trans. Electron Devices, 2012,59:2363-2367
-
[83]
[83] Yang J, Chang T, Huang J, et al. Thin Solid Films, 2013, 529:200-204
-
[84]
[84] Shaposhnikov A, Perevalov T, Gritsenko V, et al. Appl. Phys. Lett., 2012,100:243506
-
[85]
[85] Wang S, Lee D, Huang T, et al. Nanotechnology, 2010,21:495201
-
[86]
[86] Grishin A, Velichko A, Jalalian A. Appl. Phys. Lett., 2013, 103:053111
-
[87]
[87] Arita M, Kaji H, Fujii T, et al. Thin Solid Films, 2012,520:4762-4767
-
[88]
[88] Nagashima K, Yanagida T, Oka K, et al. Appl. Phys. Lett., 2009,94:242902
-
[89]
[89] Tulina N, Borisenko I, Ionov A, et al. Solid State Commun., 2010,150:2089-2092
-
[90]
[90] Liang L, Li K, Xiao C, et al. J. Am. Chem. Soc., 2015,137:3102-3108
-
[91]
[91] Ahn Y, Ho L, Hwan K, et al. J. Appl. Phys., 2012,112:114105
-
[92]
[92] Kiazadeh A, Gomes H, da Costa A, et al. Thin Solid Films, 2012,522:407-411
-
[93]
[93] Hu Z, Li Q, Li M, et al. Appl. Phys. Lett., 2013,102:102901
-
[94]
[94] Hu W, Chen X, Wu G, et al. Appl. Phys. Lett., 2012,101:063501
-
[95]
[95] Dong H, Zhang X, Zhao D, et al. Nanoscale, 2012,4:2571-2574
-
[96]
[96] Huang J, Yen W, Lin S, et al. J. Mater. Chem. C, 2014,2:4401-4405
-
[97]
[97] Wang Z, Xu H, Li X, et al. Adv. Funct. Mater., 2012,22:2759-2765
-
[98]
[98] Tsai Y, Chang T, Huang W, et al. Appl. Phys. Lett., 2011, 99:092106
-
[99]
[99] Zhu X, Ong C, Xu X, et al. Sci. Rep., 2013,3:1084
-
[100]
[100] Hasan M, Dong R, Choi H, et al. Appl. Phys. Lett., 2008, 92:202102
-
[101]
[101] Nili H, Walia S, Balendhran S, et al. Adv. Funct. Mater., 2014,24:6741-6750
-
[102]
[102] Takagi H, Hwang H. Science, 2010,327:1601-1602
-
[103]
[103] Geresdi A, Csontos M, Gubicza A, et al. Nanoscale, 2014, 6:2613-2617
-
[104]
[104] Gubicza A, Csontos M, Halbritter A, et al. Nanoscale, 2015, 7:4394-4399
-
[105]
[105] Mou N, Tabib M. Appl. Surf. Sci., 2015,340:138-142
-
[106]
[106] Sangwan V, Jariwala D, Kim I, et al. Nat. Nanotechnol, 2015,10:403-406
-
[107]
[107] Xu X, Yin Z, Xu C, et al. Appl. Phys. Lett., 2014,104:033504
-
[108]
[108] Soni R, Meuffels P, Kohlstedt H, et al. Appl. Phys. Lett., 2009,94:123503
-
[109]
[109] Choi S, Kim K, Park G, et al. IEEE Electron Device Lett., 2011,32:375-377
-
[110]
[110] Li Y, Zhong Y, Zhang J, et al. Appl. Phys. Lett., 2013,103:043501
-
[111]
[111] Li Y, Zhong Y, Xu L, et al. Sci. Rep., 2013,3:16191-16197
-
[112]
[112] Kozicki M, Park M, Mitkova M. IEEE Trans. Nanotechnol., 2005,4:331-338
-
[113]
[113] Chen C, Yang Y, Zeng F, et al. Appl. Phys. Lett., 2010,97:083502
-
[114]
[114] Kim H, An H, Hong S, et al. Phys. Status Solidi A, 2013, 210:1822-1827
-
[115]
[115] Emboras A, Goykhman I, Desiatov B, et al. Nano Lett., 2013,13:6151-6155
-
[116]
[116] Zhuge F, Dai W, He C L, et al. Appl. Phys. Lett., 2010,96:3163505
-
[117]
[117] Tappertzhofen S, Valov I, Waser R. Nanotechnology, 2012, 23:6
-
[118]
[118] Batra A, Darancet P, Chen Q, et al. Nano Lett., 2013,13:6233-6237
-
[119]
[119] Fuechsle M, Miwa J, Mahapatra S, et al. Nat. Nanotechnol., 2012,7:242-246
-
[120]
[120] Feng S, Xu R. Acc. Chem. Res., 2001,34:239-247
-
[121]
[121] Feng S, Yuan H, Shi Z, et al. J. Mater. Sci., 2008,43:2131-2137
-
[122]
[122] Huang K, Chu X, Yuan L, et al. Chem. Commun., 2014, 50:9200-9203
-
[123]
[123] Huang K, Chu X, Feng W, et al. Chem. Eng. J., 2014,244:27-32
-
[124]
[124] Coey J, Viret M, von Molnár S. Adv. Phys., 2009,58:571-697
-
[1]
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
-
[3]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[4]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[5]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[6]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[7]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[8]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[9]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[10]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[11]
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
-
[12]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[13]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[14]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[15]
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
-
[16]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[17]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[18]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[19]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[20]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(355)
- HTML views(90)