Citation: LI Han SONG, Fen SHI, Wei MA, CHENG Peng. Cryogenic Magnetic Refrigeration Properties of Heterometallic {LnCu3} Cluster Family[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1860-1866. doi: 10.11862/CJIC.2015.248 shu

Cryogenic Magnetic Refrigeration Properties of Heterometallic {LnCu3} Cluster Family

  • Corresponding author: CHENG Peng, 
  • Received Date: 1 June 2015
    Available Online: 14 July 2015

    Fund Project: 国家基金委创新团队(No.21421001) (No.21421001)教育部创新团队(IRT13022和13R30) (IRT13022和13R30)111引智计划(B12015) (B12015)天津市自然科学基金(13JCZDJC32200)资助项目。 (13JCZDJC32200)

  • Based on the survey of Gd-Cu complexes in literatures, a family of {LnCu3} clusters (Ln=Gd (1), Tb (2), Dy (3)) were selected to study the magnetocaloric effect (MCE) at low temperature due to their isolated Gd-Cu arrangement as well as the pure intramolecular ferromagnetic coupling. A modified one-pot synthetic method based on the reported result was developed to simplify the reaction procedure. Elementary analyses, IR, single crystal/powder X-ray diffraction measurements were carried out to determine the isomorphism and phase purity. Studies of MCEs indicate that complexes 1~3 have a maximum magnetic entropy change (-ΔSm) of 16.1 (2 K), 6.9 (5 K) and 8.1 (5 K) J·kg-1·k-1 for ΔH=0~7 T, respectively. Comparison of the MCE for {GdCu3} with the reported Gd-Cu clusters emphasizes the importance of weak ferromagnetic interactions in designing of 3d-4f molecular coolers.
  • 加载中
    1. [1]

      [1] Zheng Y Z, Zhou G J, Zheng Z, et al. Chem. Soc. Rev., 2014, 43(5):1462-1475

    2. [2]

      [2] Liu J L, Chen Y C, Guo F S, et al. Coord. Chem. Rev., 2014,281:26-49

    3. [3]

      [3] SHI Peng-Fei (时鹏飞), XIONG Gang (熊刚), ZHANG Zhan-Yun (张战运), et al. Sci. China-Chem., 2013,43(10):1262-1271

    4. [4]

      [4] Cremades E, Gómez-Coca S, Aravena D, et al. J. Am. Chem. Soc., 2012,134(25):10532-10542

    5. [5]

      [5] Chang L X, Xiong G, Wang L, et al. Chem. Commun., 2013, 49(11):1055-1057

    6. [6]

      [6] Hou Y L, Xiong G, Shi P-F, et al. Chem. Commun., 2013,49(54):6066-6068

    7. [7]

      [7] Shi P F, Zheng Y Z, Zhao X Q, et al. Chem.-Eur. J., 2012,18(47):15086-15091

    8. [8]

      [8] Bing Y, Xu N, Shi W, et al. Chem.-Asian J., 2013,8(7):1412-1418

    9. [9]

      [9] Li H, Shi W, Niu Z, et al. Dalton Trans., 2015,44(2):468-471

    10. [10]

      [10] Chen Y C, Qin L, Meng Z S, et al. J. Mater. Chem. A, 2014, 2(25):9851-9858

    11. [11]

      [11] Lorusso G, Sharples J W, Palacios E, et al. Adv. Mater., 2013,25(33):4653-4656

    12. [12]

      [12] Zhang S, Duan E, Cheng P. J. Mater. Chem. A, 2015,3(13):7157-7162

    13. [13]

      [13] Tishin A M, Spichkin Y I. The Magnetocaloric Effect and its Application. Bristol and Philadelphia:IOP Publishing, 2003.

    14. [14]

      [14] Langley S K, Chilton N F, Moubaraki B, et al. Chem. Sci., 2011,2(6):1166-1169

    15. [15]

      [15] Liu J L, Lin W Q, Chen Y C, et al. Inorg. Chem., 2013,52(1):457-463

    16. [16]

      [16] Zhang H, Zhuang G L, Kong X J, et al. Cryst. Growth Des., 2013,13(6):2493-2498

    17. [17]

      [17] Kettles F J, Milway V A, Tuna F, et al. Inorg. Chem., 2014,53(17):8970-8978

    18. [18]

      [18] Andruh M, Ramade I, Codjovi E, et al. J. Am. Chem. Soc., 1993,115(5):1822-1829

    19. [19]

      [19] Hooper T N, Schnack J, Piligkos S, et al. Angew. Chem. Int. Ed., 2012,51(19):4633-4636

    20. [20]

      [20] Liu J L, Chen Y C, Li Q W, et al. Chem. Commun., 2013, 49(58):6549-6551

    21. [21]

      [21] Xiong G, Xu H, Cui J Z, et al. Dalton Trans., 2014,43(15):5639-5642

    22. [22]

      [22] Hooper T N, Inglis R, Palacios M A, et al. Chem. Commun., 2014,50(26):3498-3500

    23. [23]

      [23] Xue S, Guo Y N, Zhao L, et al. Inorg. Chem., 2014,53(15):8165-8171

    24. [24]

      [24] Dermitzaki D, Lorusso G, Raptopoulou C P, et al. Inorg. Chem., 2013,52(18):10235-10237

    25. [25]

      [25] Liu J L, Lin W Q, Chen Y C, et al. Chem.-Eur. J., 2013,19(51):17567-17577

    26. [26]

      [26] Li Z Y, Wang Y X, Zhu J, et al. Cryst. Growth Des., 2013, 13(8):3429-3437

    27. [27]

      [27] Leng J D, Liu J L, Tong M L. Chem. Commun., 2012,48(43):5286-5288

  • 加载中
    1. [1]

      Zhike Yang Jinfan Xu Junhao Chen Zheng Yang Fei Ding Neil Qiang Su . AI NMR Assistant: A DP5-Based Intelligent System for NMR Spectral Interpretation. University Chemistry, 2026, 41(1): 20-28. doi: 10.12461/PKU.DXHX202506013

    2. [2]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    3. [3]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    4. [4]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    10. [10]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    11. [11]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    12. [12]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    16. [16]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    17. [17]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    18. [18]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

Metrics
  • PDF Downloads(0)
  • Abstract views(967)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return