Citation: DENG Rui-Ping, ZHOU Liang, LI Lei-Jiao, ZHANG Hong-Jie. Indium Tin Oxide Anode Self-Assembled Monolayer Modification for Device Performance Improvement of Organic Light-Emitting Diodes[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1839-1846. doi: 10.11862/CJIC.2015.242 shu

Indium Tin Oxide Anode Self-Assembled Monolayer Modification for Device Performance Improvement of Organic Light-Emitting Diodes

  • Corresponding author: ZHOU Liang,  ZHANG Hong-Jie, 
  • Received Date: 29 May 2015
    Available Online: 17 July 2015

    Fund Project: 科技部"973"计划(No.2014CB643802) (No.2014CB643802)国家自然科学基金创新群体(No.21221061) (No.21221061)中国科学院青年创新促进会项目(No.2013150) (No.2013150)吉林省科技发展计划项目(No.20130522125JH)资助项目。 (No.20130522125JH)

  • A novel alkoxysilane (Cz-Si) was synthesized and used as an active reagent for self-assembled monolayer (SAM) modification on indium tin oxide (ITO) surface. The as-prepared Cz-Si could modify the ITO surface successfully under the mild atmosphere without any protection, offering simple and easy experimental operation. To investigate the effect of SAM modification on the device performances, based on ITO/SAM anodes, a series of organic light-emitting diodes (OLEDs) were fabricated: ITO/SAM (or unmodified)/NPB (40~50 nm)/Alq3 (60 nm)/LiF (1.0 nm)/Al. The devices show improvement compared to their counterparts with bare ITO anodes. The improvement could be attributed to the modulating of the electronic energy, surface roughness and interface integrity at the ITO/hole transporting layer (HTL) interface by SAM modification.
  • 加载中
    1. [1]

      [1] Kim J S, Cacialli F, Cola A, et al. Appl. Phys. Lett., 1999, 75:19-21

    2. [2]

      [2] Li C N, Kwong C Y, Djurišić A B, et al. Thin Solid Films, 2005,477:57-62

    3. [3]

      [3] Helander M G, Wang Z B, Qiu J, et al. Science, 2011,332:944-947

    4. [4]

      [4] Lee S T, Wang Y M, Hou X Y, et al. Appl. Phys. Lett., 1999, 74:670-672

    5. [5]

      [5] Cui J, Huang Q, Veinot J G C, et al. Adv. Mater., 2002,14:565-569

    6. [6]

      [6] Brown T M, Kim J S, Friend R H, et al. Appl. Phys. Lett., 1999,75:1679-1681

    7. [7]

      [7] Koch N, Kahn A, Ghijsen J, et al. Appl. Phys. Lett., 2003, 82:70-72

    8. [8]

      [8] Tang J X, Li Y Q, Hung L S, et al. Appl. Phys. Lett., 2004, 84:73-75

    9. [9]

      [9] Hsiao C C, Chang C H, Jen T H, et al. Appl. Phys. Lett., 2006,88:033512

    10. [10]

      [10] Luo J X, Xiao L X, Chen Z J, et al. Appl. Phys. Lett., 2008, 93:133301

    11. [11]

      [11] Zhang H M, Fu Q, Zeng W J, et al. J. Mater. Chem. C, 2014,2:9620-9624

    12. [12]

      [12] Zhou L, Zhuang J Y, Tongay S, et al. J. Appl. Phys., 2013, 114:074506

    13. [13]

      [13] Chu T Y, Chen J F, Chen S Y, et al. Appl. Phys. Lett., 2006,89:053503

    14. [14]

      [14] Hotchkiss P J, Jones S C, Paniagua S A, et al. Acc. Chem. Res., 2012,45:337-346

    15. [15]

      [15] Kim D H, Chung C M, Park J W, et al. Ultramicroscopy, 2008,108:1233-1236

    16. [16]

      [16] Jonathan G C, Veinot, Marks T J. Acc. Chem. Res., 2005, 38:632-643

    17. [17]

      [17] Huang Q, Li J, Evmenenko G A, et al. Chem. Mater., 2006, 18:2431-2442

    18. [18]

      [18] Huang Q, Evmenenko G A, Dutta P, et al. J. Am. Chem. Soc., 2005,127:10227-10242

    19. [19]

      [19] Yan H, Lee P, Armstrong N R, et al. J. Am. Chem Soc., 2005,127:3172-3183

    20. [20]

      [20] Huang Q, Cui J, Yan H, et al. Appl. Phys. Lett., 2002,81:3528-3530

    21. [21]

      [21] Huang Q, Evmenenko G, Dutta P, et al. J. Am. Chem. Soc., 2003,125:14704-14705

    22. [22]

      [22] Wu Q H. Crit. Rev. Solid State, 2013,38:318-352

    23. [23]

      [23] HUANG Chun-Hui(黄春辉), LI Fu-You(李富友), HUANG Wei(黄维). Introduction to Organic Light-emitting Materials and Devices(有机电致发光材料与器件导论). Shanghai:Fudan University Press, 2005:111

    24. [24]

      [24] Cheng G, Zhang Y F, Zhao Y, et al. Appl. Phys. Lett., 2005,87:013506

    25. [25]

      [25] Shi J and Tang C W. Appl. Phys. Lett., 2002,80:3201-3203

    26. [26]

      [26] Tutis E, Bussac M N, Zuppiroli L. Appl. Phys. Lett., 1999, 75:3880-3882

    27. [27]

      [27] Wong K W, Yip H L, Luo Y, et al. Appl. Phys. Lett., 2002, 80:2788-2790

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(0)
  • Abstract views(466)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return