Citation: LIU Sui-Jun, CUI Yu, SONG Wei-Chao, WANG Qing-Lun, BU Xian-He. Carboxylate-Bridged Tetranuclear Lanthanide Clusters: Magnetocaloric Effect and Slow Magnetic Relaxation[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1894-1902. doi: 10.11862/CJIC.2015.240 shu

Carboxylate-Bridged Tetranuclear Lanthanide Clusters: Magnetocaloric Effect and Slow Magnetic Relaxation

  • Corresponding author: BU Xian-He, 
  • Received Date: 8 June 2015
    Available Online: 22 July 2015

    Fund Project: 国家自然科学基金(No.21290171) (No.21290171)江西省科技厅青年自然科学基金(No.20151BAB213003)资助项目。 (No.20151BAB213003)

  • By using carboxylate and chelating ligands, a family of tetranuclear lanthanide clusters, namely [Ln4(mnba)12(tzp)2(H2O)2] (Ln=Gd (1), Tb (2) and Er (3), Hmnba=m-nitrobenzoic acid, tzp=2-(1H-1, 2, 4-triazol-3-yl)pyridine), has been obtained under hydrothermal conditions. The three complexes exhibit linear tetranuclear clusters bridged by carboxylates with syn, syn-μ2-η1:η1 mode. Magnetic investigation indicates weak ferromagnetic interaction between adjacent Gd or Er ions of the Ln4 cluster in 1 and 3, while weak intra-molecular antiferromagnetic interaction between Tb ions and/or depopulation of the Tb excited Stark sub-levels in 2. Complex 1 exhibits a significant magnetocaloric effect with -ΔSmmax=20.6 J·kg-1·k-1 and ac susceptibility measurements reveal frequency- and temperature-dependent out-of-phase signal under 5 kOe dc field in 3, being typical slow magnetic relaxation behavior due to strong anisotropy of Er and ferromagnetic coupling.
  • 加载中
    1. [1]

      [1] Zheng Y Z, Zhou G J, Zheng Z, et al. Chem. Soc. Rev., 2014, 43:1462-1475

    2. [2]

      [2] Sharples J W, Collison D. Polyhedron, 2013,54:91-103

    3. [3]

      [3] Woodruff D N, Winpenny R E P, Layfield R A. Chem. Rev., 2013,113:5110-5148

    4. [4]

      [4] Liu J L, Chen Y C, Guo, F S, et al. Coord. Chem. Rev., 2014,281:26-49

    5. [5]

      [5] Rinehart J D, Long J R. Chem. Sci., 2011,2:2078-2085

    6. [6]

      [6] Habib F, Murugesu M. Chem. Soc. Rev., 2013,42:3278-3288

    7. [7]

      [7] Wang P, Shannigrahi S, Yakovlev N L, et al. Chem. Asian J., 2013,8:2943-2946

    8. [8]

      [8] Liu S J, Zhao J P, Tao J, et al. Inorg. Chem., 2013,52:9163-9165

    9. [9]

      [9] Sharples J W, Zheng Y Z, Tuna F, et al. Chem. Commun., 2011,47:7650-7652

    10. [10]

      [10] Chang L X, Xiong G, Wang L, et al. Chem. Commun., 2013, 49:1055-1057

    11. [11]

      [11] Guo F S, Chen Y C, Mao L L, et al. Chem. Eur. J., 2013, 19:14876-14885

    12. [12]

      [12] Guo F S, Leng J D, Liu J L, et al. Inorg. Chem., 2012,51:405-413

    13. [13]

      [13] Evangelisti M, Roubeau O, Palacios E, et al. Angew. Chem. Int. Ed., 2011,50:6606-6609

    14. [14]

      [14] Liu S J, Xie C C, Jia J M, et al. Chem. Asian J., 2014,9:1116-1122

    15. [15]

      [15] Lorusso G, Sharples J W, Palacios E, et al. Adv. Mater., 2013,25:4653-4656

    16. [16]

      [16] Han S D, Miao X H, Liu S J, et al. Inorg. Chem. Front., 2014,1:549-552

    17. [17]

      [17] Blagg R J, Muryn C A, McInnes E J L, et al. Angew. Chem. Int. Ed., 2011,50:6530-6533

    18. [18]

      [18] Gao F, Cui L, Liu W, et al. Inorg. Chem., 2013,52:11164-11172

    19. [19]

      [19] Guo Y N, Xu G F, Wernsdorfer W, et al. J. Am. Chem. Soc., 2011,133:11948-11951

    20. [20]

      [20] Jiang S D, Liu S S, Zhou L N, et al. Inorg. Chem., 2012,51:3079-3087

    21. [21]

      [21] Jiang S D, Wang B W, Sun H L, et al. J. Am. Chem. Soc., 2011,133:4730-4733

    22. [22]

      [22] Rell N M, Anwar M U, Drover M W, et al. Inorg. Chem., 2013,52:6731-6742

    23. [23]

      [23] Anwar M U, Thompson L K, Dawe L N, et al. Chem. Commun., 2012,48:4576-4578

    24. [24]

      [24] Liu C M, Zhang D Q, Hao X, et al. Cryst. Growth Des., 2012,12:2948-2954

    25. [25]

      [25] Xu X, Zhao L, Xu G F, et al. Dalton. Trans., 2011,40:6440-6444

    26. [26]

      [26] Liu S J, Zhao J P, Song W C, et al. Inorg. Chem., 2013,52:2103-2109

    27. [27]

      [27] Sessoli R, Powell A K. Coord. Chem. Rev., 2009,253:2328-2341

    28. [28]

      [28] Jia J M, Liu S J, Cui Y, et al. Cryst. Growth Des., 2013,13:4631-4634

    29. [29]

      [29] Liu S J, Zeng Y F, Xue L, et al. Inorg. Chem. Front., 2014, 1:200-206

    30. [30]

      [30] Han S D, Miao X H, Liu S J, et al. Chem. Asian J., 2014,9:3116-3120

    31. [31]

      [31] Miao X H, Han S D, Liu S J, et al. Chin. Chem. Lett., 2014, 25:829-834

    32. [32]

      [32] Rigaku. CrystalClear, Process-Auto Rigaku Americas Corporation, The Woodlands, Texas, 1998.

    33. [33]

      [33] Sheldrick G M. SHELXL97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

    34. [34]

      [34] Wu M F, Wang M S, Guo S P, et al. Cryst. Growth Des., 2011,11:372-381

    35. [35]

      [35] Kahn M L, Sutter J P, Golhen S, et al. J. Am. Chem. Soc., 2000,122:3413-3421

    36. [36]

      [36] Zheng Y Z, Lan Y H, Wernsdorfer W, et al. Chem. Eur. J., 2009,15:12566-12570

    37. [37]

      [37] Souletie J, Rabu P, Drillon M. Phys. Rev. B, 2005,72:214427

    38. [38]

      [38] Drillon M, Panissod P, Rabu P, et al. Phys. Rev. B, 2002, 65:104404

    39. [39]

      [39] Zheng Y Z, Evangelisti M, Winpenny R E P. Angew. Chem. Int. Ed., 2011,50:3692-3695

    40. [40]

      [40] Zheng Y Z, Pineda E M, Helliwell M, et al. Chem. Eur. J., 2012,18:4161-4165

    41. [41]

      [41] FAN Shao-Yong(范少勇), HUANG Ke-Di(黄科棣), TANG Qing-Mei(唐清美), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30:1167-1173

    42. [42]

      [42] Peng J B, Kong X J, Zhang Q C, et al. J. Am. Chem. Soc., 2014,136:17938-17941

    43. [43]

      [43] Adhikary A, Jena H S, Biswas S, et al. Chem. Asian J., 2014,9:1083-1090

    44. [44]

      [44] Adhikary A, Sheikh J A, Biswas S, et al. Dalton Trans., 2014,43:9334-9343

    45. [45]

      [45] Sheikh J A, Adhikary A, Konar S. New J. Chem., 2014,38:3006-3014

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    4. [4]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    5. [5]

      Shengli Chen Xinxin Zhao Mingxue Xing Xintai Li Xiaojie Zhang Xiuli Hu Jimin Zhang . “一触即发”:聚羧酸减水剂和水泥的魔力碰撞. University Chemistry, 2025, 40(8): 315-322. doi: 10.12461/PKU.DXHX202410036

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    11. [11]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    18. [18]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

Metrics
  • PDF Downloads(0)
  • Abstract views(568)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return