Citation: WANG Shuang, DING Wei, WANG Ding-Cong, ZHAO De-Zhi. Formation Mechanism of NSA of Secondly Nano Self-Assembly Macropore Alumina Penetrable Pore[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1539-1547. doi: 10.11862/CJIC.2015.214 shu

Formation Mechanism of NSA of Secondly Nano Self-Assembly Macropore Alumina Penetrable Pore

  • Corresponding author: DING Wei, 
  • Received Date: 14 February 2015
    Available Online: 20 May 2015

    Fund Project: 中国石油化工集团(总合-JQ1416)资助项目 (总合-JQ1416)中国海洋石油总公司资助项目(No.20140331)。 (No.20140331)

  • The macropore alumina catalysis material FA-06 was prepared by nano self-assembly technique which has a pore volume of 1.39 cm3·g-1, a specific surface area of 297 m2·g-1, most probable pore size of 32.4 nm and a porosity of 81.85%. High concentration pore size distribution of 10~30 nm and 30~60 nm which percentages are 35.61% and 40.88%, respectively. GPC showed that the dispersion and relative molecular weight of RHP are controlled by the amount of PIBSA, which is the formation material of RHP, in order to control the pore sizes. From TEM and SEM, the results showed that the diameters of nano aluminum hydroxide rods are 250~300 nm, and the lengths are 600~800 nm. After calcinating at 550.0℃, the nano alumina rods had the diameter of 150~300 nm, the length of 400~600 nm. XRD results of burned nano self-assembly aluminum hydroxide showed that γ-Al2O3 be formed completely from three types of precursor of nano self-assembly aluminum hydroxide by burning process. Combining with data of TG, the γ-Al2O3 is formed completely due to the decomposition of pseudoboehmite at temperature of 605.0℃, and the total weight loss reaches 61.88%. Based on the above experimental results, the molecular self-assembly and nano self-assembly formation process of reverse supersoluble micelle, aluminum hydroxide and macropore alumina were simulated. Moreover, the formation mechanism of NSA of nano self-assembly macropore alumina with penetrable pores was presented.
  • 加载中
    1. [1]

      [1] Gleiter H, Schimmel T H, Hahn H. Nano Today, 2014,9(1):17-68

    2. [2]

      [2] Minsu K, Eunseuk P, Hyounduk J, et al. Powder Technol., 2014,267:153-160

    3. [3]

      [3] Zhang J H, Xiao X, Nan J M. J. Hazard. Mater., 2010,176(1/2/3):617-622

    4. [4]

      [4] Zahra Z, Ahmad T, Saber T, et al. J. Energ. Chem., 2014,23(1):57-65

    5. [5]

      [5] Chandra B B, Buddhudu S. Physics Procedia, 2013,49:128-136

    6. [6]

      [6] Amiri S, Shokrollashi H. J. Magn. Magn. Mater., 2013,345:18-23

    7. [7]

      [7] Guo Y B, Ren Z, Xiao W, et al. Nano Energy, 2013,2(5):873-881

    8. [8]

      [8] WANG Cheng(王程), SHI Hui-Sheng(施惠生), LI Yan(李艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(11):2239-2244

    9. [9]

      [9] Huang B Y, Calvin H, Bartholomew B F, et al. Microporous Mesoporous Mater., 2014,183:37-47

    10. [10]

      [10] Shi Y F, Fu Y Y, Lü H L, et al. Mater. Lett., 2014,125(15):198-201

    11. [11]

      [11] Wu W L, Pan D, Li Y F, et al. Electrochim. Acta, 2015,152(10):126-134

    12. [12]

      [12] Zhang X M, Li Z Y, Yuan X B, et al. Appl. Surf. Sci., 2013, 284(1):732-737

    13. [13]

      [13] Cai H Y, Tang Q W, He B L, et al. Electrochim. Acta, 2014, 121(1):136-142

    14. [14]

      [14] Meng K, Guo H J, Wang Z X, et al. Powder Technol., 2014, 254:403-406

    15. [15]

      [15] Zhang J, Yang D G, Li W J, et al. Electrochim. Acta, 2014, 130(1):699-706

    16. [16]

      [16] Liu Q Y, Zhou H Y, Zhu J Q, et al. Mater. Sci. Eng., C, 2013, 33(8):4944-4951

    17. [17]

      [17] Xiong J Q, Tao J, Xu S J, et al. Mater. Lett., 2015,139(15):173-176

    18. [18]

      [18] Wu Y T, Wang X F. Mater. Lett., 2015,142:109

    19. [19]

      [19] Zhang Y X, Hao X D, Diao Z P. Chin. Chem. Lett., 2014,25(6):874-878

    20. [20]

      [20] YANG Xiao-Hong(杨小红), LIU Chang(刘畅), LIU Jin-Ku (刘金库), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011,27(12):2939-2945

    21. [21]

      [21] WANG Shi-Min(王世敏), XU Zu-Xun(许祖勋), FU Jing(傅晶). Preparation Technology of Nano Materials(纳米材料制备技术). Beijing:Chemical Industry Press, 2002:244-281

    22. [22]

      [22] Wang D C. Sci. China Ser. B:Chem, 2007,50(1):105-113

    23. [23]

      [23] Wang D C. Sci. China Ser. B:Chem, 2009,52(12):2106-2113

    24. [24]

      [24] WANG Ding-Cong(王鼎聪). Sci. China Ser. B-Chem(中国科学B辑:化学), 2006,36(4):338-346

    25. [25]

      [25] WANG Ding-Cong(王鼎聪), LIU Ji-Rui(刘纪瑞). Petroleum Processing And Petrochemicals(石油炼制与化工), 2010,41(1):31-35

    26. [26]

      [26] ZHANG Kai(张凯), WANG Ding-Cong(王鼎聪). Scientia Sinica Chimica(中国科学:化学), 2013,43(11):1548-1556

    27. [27]

      [27] Zhang J X, Ma P X. Nano Today, 2010,5(4):337-350

    28. [28]

      [28] Qiu F Y, Li L, Liu G, et al. Int. J. Hydrogen Energy, 2013, 38(8):3241-3249

    29. [29]

      [29] Holgado P H, Holgado M J, Maria S, et al. Mater. Chem. Phys., 2015,151(1):140-148

    30. [30]

      [30] Mallaiah M, Sunil K T, Venkat R G. Chem. Eng. Sci., 2013, 104(18):565-573

    31. [31]

      [31] Zhang Y L, Xia J, Feng X, et al. Sens. Actuators, B, 2012, 161(1):587-593

    32. [32]

      [32] ZHANG Jin-Zhong(张金中), WANG Zhong-Lin(王中林), LIU Jun(刘俊), et al. Self-Assembled Nanostructures(自组装纳米结构). Beijing:Chemical Industry Press, 2005:81-91

    33. [33]

      [33] HE You-Zhou(贺有周), LIU Yun(刘云), LIU Peng(刘鹏), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(8):1501-1508

    34. [34]

      [34] DING Wei(丁巍), WANG Ding-Cong(王鼎聪), ZHAO De-Zhi(赵德智), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(6):1345-1351

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    3. [3]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    4. [4]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    16. [16]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(1)
  • Abstract views(188)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return