Citation:
WANG Shuang, DING Wei, WANG Ding-Cong, ZHAO De-Zhi. Formation Mechanism of NSA of Secondly Nano Self-Assembly Macropore Alumina Penetrable Pore[J]. Chinese Journal of Inorganic Chemistry,
;2015, 31(8): 1539-1547.
doi:
10.11862/CJIC.2015.214
-
The macropore alumina catalysis material FA-06 was prepared by nano self-assembly technique which has a pore volume of 1.39 cm3·g-1, a specific surface area of 297 m2·g-1, most probable pore size of 32.4 nm and a porosity of 81.85%. High concentration pore size distribution of 10~30 nm and 30~60 nm which percentages are 35.61% and 40.88%, respectively. GPC showed that the dispersion and relative molecular weight of RHP are controlled by the amount of PIBSA, which is the formation material of RHP, in order to control the pore sizes. From TEM and SEM, the results showed that the diameters of nano aluminum hydroxide rods are 250~300 nm, and the lengths are 600~800 nm. After calcinating at 550.0℃, the nano alumina rods had the diameter of 150~300 nm, the length of 400~600 nm. XRD results of burned nano self-assembly aluminum hydroxide showed that γ-Al2O3 be formed completely from three types of precursor of nano self-assembly aluminum hydroxide by burning process. Combining with data of TG, the γ-Al2O3 is formed completely due to the decomposition of pseudoboehmite at temperature of 605.0℃, and the total weight loss reaches 61.88%. Based on the above experimental results, the molecular self-assembly and nano self-assembly formation process of reverse supersoluble micelle, aluminum hydroxide and macropore alumina were simulated. Moreover, the formation mechanism of NSA of nano self-assembly macropore alumina with penetrable pores was presented.
-
-
-
[1]
[1] Gleiter H, Schimmel T H, Hahn H. Nano Today, 2014,9(1):17-68
-
[2]
[2] Minsu K, Eunseuk P, Hyounduk J, et al. Powder Technol., 2014,267:153-160
-
[3]
[3] Zhang J H, Xiao X, Nan J M. J. Hazard. Mater., 2010,176(1/2/3):617-622
-
[4]
[4] Zahra Z, Ahmad T, Saber T, et al. J. Energ. Chem., 2014,23(1):57-65
-
[5]
[5] Chandra B B, Buddhudu S. Physics Procedia, 2013,49:128-136
-
[6]
[6] Amiri S, Shokrollashi H. J. Magn. Magn. Mater., 2013,345:18-23
-
[7]
[7] Guo Y B, Ren Z, Xiao W, et al. Nano Energy, 2013,2(5):873-881
-
[8]
[8] WANG Cheng(王程), SHI Hui-Sheng(施惠生), LI Yan(李艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(11):2239-2244
-
[9]
[9] Huang B Y, Calvin H, Bartholomew B F, et al. Microporous Mesoporous Mater., 2014,183:37-47
-
[10]
[10] Shi Y F, Fu Y Y, Lü H L, et al. Mater. Lett., 2014,125(15):198-201
-
[11]
[11] Wu W L, Pan D, Li Y F, et al. Electrochim. Acta, 2015,152(10):126-134
-
[12]
[12] Zhang X M, Li Z Y, Yuan X B, et al. Appl. Surf. Sci., 2013, 284(1):732-737
-
[13]
[13] Cai H Y, Tang Q W, He B L, et al. Electrochim. Acta, 2014, 121(1):136-142
-
[14]
[14] Meng K, Guo H J, Wang Z X, et al. Powder Technol., 2014, 254:403-406
-
[15]
[15] Zhang J, Yang D G, Li W J, et al. Electrochim. Acta, 2014, 130(1):699-706
-
[16]
[16] Liu Q Y, Zhou H Y, Zhu J Q, et al. Mater. Sci. Eng., C, 2013, 33(8):4944-4951
-
[17]
[17] Xiong J Q, Tao J, Xu S J, et al. Mater. Lett., 2015,139(15):173-176
-
[18]
[18] Wu Y T, Wang X F. Mater. Lett., 2015,142:109
-
[19]
[19] Zhang Y X, Hao X D, Diao Z P. Chin. Chem. Lett., 2014,25(6):874-878
-
[20]
[20] YANG Xiao-Hong(杨小红), LIU Chang(刘畅), LIU Jin-Ku (刘金库), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011,27(12):2939-2945
-
[21]
[21] WANG Shi-Min(王世敏), XU Zu-Xun(许祖勋), FU Jing(傅晶). Preparation Technology of Nano Materials(纳米材料制备技术). Beijing:Chemical Industry Press, 2002:244-281
-
[22]
[22] Wang D C. Sci. China Ser. B:Chem, 2007,50(1):105-113
-
[23]
[23] Wang D C. Sci. China Ser. B:Chem, 2009,52(12):2106-2113
-
[24]
[24] WANG Ding-Cong(王鼎聪). Sci. China Ser. B-Chem(中国科学B辑:化学), 2006,36(4):338-346
-
[25]
[25] WANG Ding-Cong(王鼎聪), LIU Ji-Rui(刘纪瑞). Petroleum Processing And Petrochemicals(石油炼制与化工), 2010,41(1):31-35
-
[26]
[26] ZHANG Kai(张凯), WANG Ding-Cong(王鼎聪). Scientia Sinica Chimica(中国科学:化学), 2013,43(11):1548-1556
-
[27]
[27] Zhang J X, Ma P X. Nano Today, 2010,5(4):337-350
-
[28]
[28] Qiu F Y, Li L, Liu G, et al. Int. J. Hydrogen Energy, 2013, 38(8):3241-3249
-
[29]
[29] Holgado P H, Holgado M J, Maria S, et al. Mater. Chem. Phys., 2015,151(1):140-148
-
[30]
[30] Mallaiah M, Sunil K T, Venkat R G. Chem. Eng. Sci., 2013, 104(18):565-573
-
[31]
[31] Zhang Y L, Xia J, Feng X, et al. Sens. Actuators, B, 2012, 161(1):587-593
-
[32]
[32] ZHANG Jin-Zhong(张金中), WANG Zhong-Lin(王中林), LIU Jun(刘俊), et al. Self-Assembled Nanostructures(自组装纳米结构). Beijing:Chemical Industry Press, 2005:81-91
-
[33]
[33] HE You-Zhou(贺有周), LIU Yun(刘云), LIU Peng(刘鹏), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(8):1501-1508
-
[34]
[34] DING Wei(丁巍), WANG Ding-Cong(王鼎聪), ZHAO De-Zhi(赵德智), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(6):1345-1351
-
[1]
-
-
-
[1]
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
-
[2]
Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031
-
[3]
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
-
[4]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[5]
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
-
[6]
Pingsheng He , Haiyang Yang , Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029
-
[7]
Rui Xu , Wei Li , Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081
-
[8]
Chunyang Bao , Ruoxuan Miao , Yuhan Ding , Qingfu Ban , Yusheng Qin , Jie Liu , Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087
-
[9]
Hujun Qian , Rui Shi , Guanglu Wu , Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009
-
[10]
Pingping Zhu , Qiang Zhou , Yu Huang , Haiyang Yang , Pingsheng He , Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170
-
[11]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[12]
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
-
[13]
Lilong Gao , Yuhao Zhai , Dongdong Zhang , Linjun Huang , Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143
-
[14]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[15]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[16]
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
-
[17]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[18]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[19]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[20]
Bei Liu , Heng Li , Mei Yang , Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(250)
- HTML views(21)