Citation: CHEN Ai-Min, WANG Jing, BO Ying-Ying, LIU Rui, GU Pei, PAN Zai-Fa, HU Jun. Synthesis, Characterization and Photoluminescence Properties of Hierarchical Mg3B2O6:Eu3+ Flower-Like Microspheres[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1548-1554. doi: 10.11862/CJIC.2015.208 shu

Synthesis, Characterization and Photoluminescence Properties of Hierarchical Mg3B2O6:Eu3+ Flower-Like Microspheres

  • Corresponding author: CHEN Ai-Min,  HU Jun, 
  • Received Date: 11 March 2015
    Available Online: 3 June 2015

    Fund Project: 国家自然科学基金(No.10804099,51002137) (No.10804099,51002137)浙江省自然科学基金(No.Y4080382)资助项目。 (No.Y4080382)

  • Flower-like Mg3B2O6:Eu3+ hierarchical microspheres, with an average diameter of 2.0~2.5 μm, were successfully synthesized via a simple precipitation method using poly (vinyl pyrrolidone) as template and followed by a subsequent heat treatment. The structure, morphology, composition and photoluminescence (PL) properties of as-prepared and calcined samples were systematically characterized by XRD, SEM, TEM and PL spectra, respectively. The resultant products presented a strong characteristic of red emission at 612 nm corresponding to 5D07F2 of the Eu3+ transition under ultraviolet excitation at 393 nm, which may open a wide door for its applications especially in fluorescent lamps, display systems, and optoelectronic devices. Besides, we demonstrated the morphology, concentration of Eu3+ as well as calcination temperature had a great effect on the PL properties of the microspheres.
  • 加载中
    1. [1]

      [1] Mu J S, Zhang L, Zhao M, et al. ACS Appl. Mater. Interfaces, 2014,6:7090-7098

    2. [2]

      [2] Hu J S, Zhong L S, Song W G, et al. J. Adv. Mater., 2008, 20:2977-2982

    3. [3]

      [3] Li C C, Yin X M, Wang T H, et al. Chem. Mater., 2009,21:4984-4992

    4. [4]

      [4] Chen A M, Li J, Gu P, et al. Powder Technol., 2014,267:54-60

    5. [5]

      [5] Yin S Y, Zhang Y Y, Kong J H. ACS Nano, 2011,5:3831-3838

    6. [6]

      [6] Kim P, Kreder M J, Alvarenga J, et al. Nano Lett., 2013,13:1793-1799

    7. [7]

      [7] Wei X W, Zhou X M, Wu K L, et al. CrystEngComm, 2011, 13:1328-1332

    8. [8]

      [8] Sarkar S, Pradhan M, Sinha A K, et al. Inorg. Chem., 2010, 49(19):8813-8827

    9. [9]

      [9] Singh B P, Parchur A K, Ningthoujam R S, et al. Dalton Trans., 2014,43:4779-4789

    10. [10]

      [10] Zeuner M, Hintze F, Schnick W. Chem. Mater., 2009,21:336-342

    11. [11]

      [11] Qin X P, Zhou G H, Yang H, et al. J. Alloys Compd., 2010, 493:672-677

    12. [12]

      [12] Di W H, Wang X J, Chen B J. Opt. Mater., 2005,27:1386-1390

    13. [13]

      [13] Yang J, Quan Z W, Kong D Y, et al. Cryst. Growth Des., 2007,7:730-735

    14. [14]

      [14] Pao R P. J. Electrochem. Soc., 1996,143(1):189-197

    15. [15]

      [15] Szczeszak A, Kubasiewicz K, Lis S. Opt. Mater., 2013,35:1297-1303

    16. [16]

      [16] Szczeszak A, Grzyb T, Barszcz B, et al. Inorg. Chem., 2013, 52:4934-4940

    17. [17]

      [17] Cai G M, Zheng F, Yi D Q, et al. J. Lumin., 2010,130:910-916

    18. [18]

      [18] Yang J, Li C X, Zhang X M, et al. Chem. Eur. J., 2008,14:4336-4345

    19. [19]

      [19] Jiang X C, Sun L D, Feng W, et al. Cryst. Growth Des., 2004,4(3):517-520

    20. [20]

      [20] Jia G, Zhang C M, Wang C Z, et al. CrystEngComm, 2012, 14:579-584

    21. [21]

      [21] Dwivedi Y, Rai D K, Rai S B. Opt. Mater., 2010,32:913-919

    22. [22]

      [22] WU Yan-Li(吴燕利), XU Xian-Zhu(徐贤柱), WEN Jia(文佳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015, 31:1-6

    23. [23]

      [23] Jiang X C, Yan C H, Sun L D, et al. J. Solid State Chem., 2003,175:245-251

    24. [24]

      [24] Jiang X C, Sun L D, Yan C H. J. Phys. Chem. B, 2004,108:3387-3390

    25. [25]

      [25] Diaz A, Keszler D A. Chem. Mater., 1997,9:2071-2077

    26. [26]

      [26] Furetta C, Kitis G, Weng P S, et al. Nucl. Instrum. Methods Phys. Res. Sect. A, 1999,420:441-445

    27. [27]

      [27] Liu J P, Li Y, Huang X T, et al. Chem. Mater., 2008,20:250-257

    28. [28]

      [28] Zhang J, Li Z Q, Zhang B. Mater. Chem. Phys., 2006,98:195-197

    29. [29]

      [29] Tao X Y, Li X D. Nano Lett., 2008,8(2):505-510

    30. [30]

      [30] Xu B S, Li T B, Zhang Y, et al. Cryst. Growth Des., 2008,8(4):1218-1222

    31. [31]

      [31] Zhu W C, Zhang Q, Xiang L, et al. Cryst. Growth Des., 2008,8(8):2938-2944

    32. [32]

      [32] Nuansing W, Ninmuang S, Jarernboon W, et al. Mater. Sci. Eng. B, 2006,131:147-155

    33. [33]

      [33] Zhang Z Y, Li X H, Wang C H, et al. J. Phys. Chem. C, 2009,113:19397-19403

    34. [34]

      [34] Maensiri S, Sangmanee M, Wiengmoon A. Nanoscale Res. Lett., 2009,4:221-228

    35. [35]

      [35] Li C R, Cui M Y, Sun Q T, et al. J. Alloys Compd., 2010, 504:498-502

    36. [36]

      [36] LI Shan-Shan(李珊珊), XIA Hai-Ping(夏海平), FU Li(符立), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(9):1752-1757

    37. [37]

      [37] Bao S P, Chen X Y, Li Z, et al. CrystEngComm, 2011,13:2511-2520

    38. [38]

      [38] Levin E M, Roth R S, Martin J B. Am. Mineral., 1961,46:1030-1053

    39. [39]

      [39] Zhang L H, Jia G, You H P, et al. J. Inorg. Chem., 2010,49:3305-3309

    40. [40]

      [40] Pang H C, Ning G L, Gong W T, et al. New J. Chem., 2011, 35:1449-1452

    41. [41]

      [41] Judd B R. Phys. Rev., 1962,127:750-761

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    15. [15]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

Metrics
  • PDF Downloads(0)
  • Abstract views(237)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return