Citation: LI Biao, ZHANG Hong-Yan, ZHENG Jia-Jun, QIN Bo, PAN Meng, CHEN Jia-Qi, YU Feng, WANG Guang-Shuai, LI Rui-Feng. Bi-phase Zeolites Composite MFI/BEA: Synthesis and Application in Selective Catalytic Reduction of NOx by Methane[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1563-1570. doi: 10.11862/CJIC.2015.206 shu

Bi-phase Zeolites Composite MFI/BEA: Synthesis and Application in Selective Catalytic Reduction of NOx by Methane

  • Corresponding author: ZHENG Jia-Jun,  YU Feng, 
  • Received Date: 22 April 2015
    Available Online: 18 June 2015

    Fund Project: 国家自然科学基金委-中石化联合基金(No.U1463209) (No.U1463209)

  • Zeolite-zeolite composites composed of ZSM-5 and β zeolite crystals were synthesized by a two-step hydrothermal crystallization procedure (denoted as MFI/BEA), in which the mixture of pre-synthesized β zeolite was used as the nutrients for the growth of the post-synthesized ZSM-5 zeolite. The structural, crystalline, and textural properties of the as-synthesized materials, as well as the references ZSM-5 and β zeolite samples, were characterized by XRD, FTIR, in situ pyridine IR spectroscopy, NH3-TPD, nitrogen adsorption/desorption, TEM and SEM. The results displayed that the post-synthesized ZSM-5 zeolite unexpectedly grew within the β zeolite crystals, and the ratios of MFI/BEA in the as-synthesized zeolite-zeolite composites could be adjusted by controlling the second-step crystalline time. Catalytic performances of Co-β, Co-ZSM-5 and Co-MFI/BEA were investigated during the catalytic reduction of NO by methane in the presence of O2. As compared with the references Co-β and Co-ZSM-5, the zeolite-zeolite composites Co-MFI/BEA exhibited an excellent catalytic performance with a higher activity as well as a higher stability and an excellent sulfur-resistance.
  • 加载中
    1. [1]

      [1] Enterría M, Suárez-García F, Martínez-Alonso A, et al. J. Alloys Compd., 2014,583(15):60-69

    2. [2]

      [2] LI Yu-Ping(李玉萍), PAN Rui-Li(潘瑞丽), HUO Quan(霍全), et al. Chinese J. Inorg. Chem.(无机化学学报), 2005,21(10):1455-1459

    3. [3]

      [3] Zhao Q Q, Qin B, Zheng J J, et al. Chem. Eng. J., 2014,257:262-272

    4. [4]

      [4] ZHANG Qiu(张球), TAN Wei(谭薇), ZHENG Jia-Jun(郑家军), et al. J. Inorg. Mater.(无机材料学报), 2014,29(9):985-990

    5. [5]

      [5] ZHANG Qiang(张强), XU Shao-Jun(徐少军), MENG Xiao-Jing(孟晓静), et al. Chem. J. Chinese Universities(高等学校化学学报), 2013,34(4):782-787

    6. [6]

      [6] ZHANG Qiang(张强), LI Chun-Yi(李春义), SHAN Hong-Hong(山红红), et al. Chem. J. Chinese Universities(高等学校化学学报), 2011,32(12):2721-2726

    7. [7]

      [7] Pirngruber G D, Laroche C, Maricar-Pichon M, et al. Micro-porous Mesoporous Mater., 2013,169:212-217

    8. [8]

      [8] ZHANG Lan(张兰), ZHANG Zhen-Zhong(张振中), WEI Ji-Ying(尉继英), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2012,28(6):1439-1447

    9. [9]

      [9] Ganjala V S P, Neeli C K P, Pramod C V, et al. Catal. Commun., 2014,49:82-86

    10. [10]

      [10] Duan C, Zhang X, Zhou R, et al. Catal. Lett., 2011,141:1821-1827

    11. [11]

      [11] Zheng J J, Zeng Q H, Yi Y M, et al. Catal. Today, 2011,168(1):124-132

    12. [12]

      [12] Zheng J J, Wang G S, Pan M, et al. Microporous Mesoporous Mater., 2015,206:114-120

    13. [13]

      [13] Jia L X, Sun X Y, Ye X Q, et al. Microporous Mesoporous Mater., 2013,176:16-24

    14. [14]

      [14] Zheng J J, Yi Y M, Wang W L, et al. Microporous Meso-porous Mater., 2013,171:44-52

    15. [15]

      [15] Zeng Q H, Bai X, Zheng J J, et al. Chinese Chem. Lett., 2011,22(9):1103-1106

    16. [16]

      [16] Wang D J, Liu Z N, Wang H, et al. Microporous Mesoporous Mater., 2010,132(3):428-434

    17. [17]

      [17] Groen J C, Zhu W, Brouwer S, et al. J. Am. Chem. Soc., 2007,129(2):355-360

    18. [18]

      [18] Zheng J J, Zeng Q H, Ma J H, et al. Chem. Lett., 2010,39(4):330-331

    19. [19]

      [19] GUO Da-Lei(郭大雷), ZHENG Jia-Jun(郑家军), YI Yu-Ming (易玉明), et al. Acta Petrolei Sinica(Petroleum Processing Section)(石油学报(石油加工)), 2013,29(4):591-596

    20. [20]

      [20] Bouizi Y, Rouleau L, Valtchev V P. Chem. Mater., 2006,18(20):4959-4966

    21. [21]

      [21] Bouizi Y, Rouleau L, Valtchev V P, et al. Adv. Func. Mater., 2005,15(12):1955-1960

    22. [22]

      [22] Zheng J J, Ma J H, Wang Y et al. Catal. Lett., 2009,130:672-678

    23. [23]

      [23] Verboekend D, Pérez-Ramírez J. Catal. Sci. Technol., 2011, 1:879-890

    24. [24]

      [24] Zhang J Q, Fan W B, Liu Y Y, et al. Appl. Catal. B:Environ., 2007,76(1/2):174-184

    25. [25]

      [25] Resini C, Montanari T, Nappi L, et al. J. Catal., 2003,214(2):179-190

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      . . University Chemistry, 2024, 39(5): 0-0.

    20. [20]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

Metrics
  • PDF Downloads(0)
  • Abstract views(425)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return