Citation: XU Jing-Yao, ZHANG Lei, HU Jin-Song, SHAO Xue-Man, PAN Cheng-Ling. Two Divalent Ytterbium Complexes with Diamido Ligands [K2(L)(THF)2](L=[Ph2Si(NAr)2]2-, Ar=2,6-iPr2C6H3)[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1433-1438. doi: 10.11862/CJIC.2015.203 shu

Two Divalent Ytterbium Complexes with Diamido Ligands [K2(L)(THF)2](L=[Ph2Si(NAr)2]2-, Ar=2,6-iPr2C6H3)

  • Corresponding author: HU Jin-Song,  PAN Cheng-Ling, 
  • Received Date: 17 March 2015
    Available Online: 6 June 2015

    Fund Project: 国家自然科学基金(No.21201006) (No.21201006) 南京大学配位化学国家重点实验室开放基金, 高等学校博士点基金(No.26920123415120002) (No.26920123415120002)

  • The reaction of diamido ligand [K2(L)(THF)2] (1) (L=[Ph2Si(NAr)2]2-, Ar=2,6-iPr2C6H3) with YbI2(THF)2 afforded two complexes [Yb(L)(THF)3] (2) and {Yb(L)2[K(THF)2]2} (3), which were characterized by X-ray structure analysis, NMR and elemental analysis. The coordination geometry of complex 2 is five-coordinated, and Yb metal center is coordinated by one amido ligand and three THF molecules. Complex 3 adopts a four-coordinated, nearly planar geometry around the Yb(Ⅱ) center. Two potassium ion is sandwiched between two phenyl rings via cation-arene π-interactions, which helps to stabilize the metal center.
  • 加载中
    1. [1]

      [1] Edelmann F T, Freckmann D M M, Schumann H. Chem. Rev., 2002, 102:1851-1896

    2. [2]

      [2] Cassani M C, Gunko Y K, Hitchcock P B, et al. J. Organomet. Chem., 2002, 647:71-83

    3. [3]

      [3] Zimmermann M, Anwander R. Chem. Rev., 2010, 110:6194-6259

    4. [4]

      [4] Bradley D C, Ghotra J S, Hart F A. J. Chem. Soc., Dalton Trans., 1973:1021-1023

    5. [5]

      [5] Eller P G, Bradley D C, Hursthouse M B, et al. Coord. Chem. Rev., 1977, 24:1-95

    6. [6]

      [6] Gountchev T I, Tilley T D. Organometallics, 1999, 18:2896-2905

    7. [7]

      [7] Graf D D, Davis W M, Schrock R R. Organometallics, 1998, 17:5820-5824

    8. [8]

      [8] Spannenberg A, Oberthur M, Noss H, et al. Angew. Chem., Int. Ed., 1998, 37:2079-2082

    9. [9]

      [9] Zimmermann M, Tornroos K W, Anwander R. Angew. Chem., Int. Ed., 2007, 46:3126-3130

    10. [10]

      [10] Evans W J, Zucchi G, Ziller J W. J. Am. Chem. Soc., 2003, 125:10-11

    11. [11]

      [11] Evans W J, Lee D S, Ziller J W. J. Am. Chem. Soc., 2004, 126:454-455

    12. [12]

      [12] Quitmann C C, Müller-Buschbaum K. Angew. Chem., Int. Ed., 2004, 43:5994-5996

    13. [13]

      [13] Avent A G, Hitchcock P B, Khvostov A V, et al. Dalton Trans., 2003:1070-1075

    14. [14]

      [14] Heitmann D, Jones C, Junk P C, et al. Dalton Trans., 2007: 187-189

    15. [15]

      [15] Heitmann D, Jones C, Mills D P, et al. Dalton Trans., 2010, 39:1877-1882

    16. [16]

      [16] Yao S, Chan H S, Lam C K, et al. Inorg. Chem., 2009, 48: 9936-9946

    17. [17]

      [17] Ku K W, Au C W, Chan H S, et al. Dalton Trans., 2013, 42: 2841-2852

    18. [18]

      [18] PAN Cheng-Ling(潘成岭). Thesis for the Doctorate of Chinese University of Hong Kong(香港中文大学博士论文). 2008.

    19. [19]

      [19] Pan C L, Pan Y S, Wang J, et al. Dalton Trans., 2011, 40: 6361-6363

    20. [20]

      [20] Pan C L, Sheng S D, Hou C M, et al. Eur. J. Inorg. Chem., 2012:779-782

    21. [21]

      [21] Pan C L, Chen W, Song J. Organometallics, 2011, 30:2252-2260

    22. [22]

      [22] Murugavel R, Palanisami N, Butcher R J. J. Organomet. Chem., 2003, 675:65-71

    23. [23]

      [23] Bruker 2000, SMART Version 5.0, SAINT-plus Version 6, SHELXTL Version 6.1, and SADABS Version 2.03, Madison, WI: Bruker AXS Inc.

    24. [24]

      [24] Evans W J, Ulibarri T A, Ziller J W. J. Am. Chem. Soc., 1988, 110:6877-6878

    25. [25]

      [25] Evans W J, Hughes L A, Hanusa T P. J. Am. Chem. Soc., 1984, 106:4270-4272

    26. [26]

      [26] Evans W J, Clark R D, Ansari M A, et al. J. Am. Chem. Soc., 1998, 120:9555-9563

    27. [27]

      [27] Evans W J, Johnston M A, Greci M A, et al. Organometallics, 1999, 18:1460-1464

    28. [28]

      [28] Edelmann A, Blaurock S, Lorenz V, et al. Angew. Chem., Int. Ed., 2007, 46:6732-6734

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    10. [10]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    11. [11]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Dongcheng Liu Xiaokun Li Huancheng Hu Cunji Gao Qiong Hu Shuting Li Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072

    14. [14]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    15. [15]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    16. [16]

      Qin Kuang Lansun Zheng Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Shouyun Yu Wenwei Zhang Shunliu Deng Weihong Li Yanping Ren Yijun Li Yuan Chun Houjin Li Li Ma Faqiong Zhao Xiuqiong Zeng Shuyong Zhang Changgong Meng Jianrong Zhang . Reflection and Practice on the Construction of Fundamental Chemistry Experiments under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 52-57. doi: 10.12461/PKU.DXHX202408009

    19. [19]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return