Citation: YE Hong-De, XU Bao-Hua, HU Jiu-Rong, YAN Hong. Cobalt(Ⅲ)-Mediated Intramolecular Coupling of B(3)/B(6) in CpCoS2C2B10H10 with Cp Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1447-1452. doi: 10.11862/CJIC.2015.200 shu

Cobalt(Ⅲ)-Mediated Intramolecular Coupling of B(3)/B(6) in CpCoS2C2B10H10 with Cp Ligand

  • Corresponding author: YE Hong-De,  YAN Hong, 
  • Received Date: 29 March 2015
    Available Online: 8 May 2015

    Fund Project: 国家自然科学基金(No.21361022, 21261020) (No.21361022, 21261020)第54批中国博士后科学基金面上基金(No.2013M541640) (No.2013M541640)

  • Half-sandwich 16e complex CpCoS2C2B10H10 (Cp: cyclopentadienyl) (1) reacted with HC≡CCO2Me in the presence of 2-methylpropanedithioic acid to generate compounds {(C5H4CoS2C2B9H9)(CH=CHCO2Me)(Me2C=CS2H)} (2) and (Me2C=CS2H)3Co (3). In 2, one S-Co bond of 1 was broken, and the S atom linked with the terminal acetylenyl carbon atom of the HC≡CCO2Me. Meanwhile, the Co atom in 1 linked to the S atom in 2-methylpropanedithioic acid with covalent bond while linked to the SH unit with coordinative bond. One carbon atom of Cp ring linked to the B(3)/B(6) cite of the carborane cage. The H atom of the B(3)/B(6) cite migrated to the internal acetylenyl carbon atom to form a trans-ethylenic bond. The Co atom of 1 linked to three S atoms of three 2-methylpropanedithioic acid molecules with covalent bond, while linked to the other three SH units with coordinative bond. As a result, product 3 formed. Complexes 2 and 3 have been characterized by IR, NMR, elemental analysis, mass spectrum and single-crystal X-ray diffraction analysis.
  • 加载中
    1. [1]

      [1] Herberhold M, Jin G X, Yan H, et al. Eur. J. Inorg. Chem., 1999, 5:873-875

    2. [2]

      [2] Herberhold M, Jin G X, Yan H, et al. J. Organomet. Chem., 1999, 587:252-257

    3. [3]

      [3] Bae J Y, Park Y L, Ko J, et al. Inorg. Chim. Acta, 1999, 289: 141-148

    4. [4]

      [4] Liu S, Han Y F, Jin G X. Chem. Soc. Rev., 2007, 36:1543-1560

    5. [5]

      [5] Herberhold M, Yan H, Milius W, et al. Organometallics, 2000, 19:4289-4294

    6. [6]

      [6] Xu B H, Wu D H, Li Y Z, et al. Organometallics, 2007, 26: 4344-4349

    7. [7]

      [7] Xu B H, Tao J C, Li Y Z, et al. Organometallics, 2008, 27: 334-340

    8. [8]

      [8] Herberhold M, Yan H, Milius W, et al. Chem. Eur. J., 2000, 6:3026-3032

    9. [9]

      [9] Herberhold M, Yan H, Milius W, et al. J. Chem. Soc., Dalton Trans., 2001:1782-1789

    10. [10]

      [10] Herberhold M, Yan H, Milius W, et al. Angew. Chem. Int. Ed., 1999, 38:3689-3691

    11. [11]

      [11] Herberhold M, Yan H, Milius W, et al. Z. Anorg. Allg. Chem., 2000, 626:1627-1633

    12. [12]

      [12] Kim D H, Ko J, Park K, et al. Organometallics, 1999, 18: 2738-2740

    13. [13]

      [13] Won J H, Kim D H, Kim B Y, et al. Organometallics, 2002, 21:1443-1453

    14. [14]

      [14] Zhang R, Zhu L, Liu G F, et al. J. Am. Chem. Soc., 2012, 134:10341-10344

    15. [15]

      [15] Frith S A, Spencer J L. Inorg. Synth., 1990, 28:273-280

    16. [16]

      [16] Hou X F, Wang X, Wang J Q, et al. J. Organomet. Chem., 2004, 689:2228-2235

    17. [17]

      [17] Sheldrick G M. SADABS, An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    18. [18]

      [18] Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

    19. [19]

      [19] Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

    20. [20]

      [20] Boese R, Blaser D, Niederprum N, et al. Angew. Chem. Int. Ed., 1992, 31:314-316

    21. [21]

      [21] Yao H J, Grimes R N. Organometallics, 2003, 22:4539-4546

    22. [22]

      [22] Russell J M, Sabat H, Grimes R N. Organometallics, 2002, 21:5613-5621

    23. [23]

      [23] Yan H, Beatty A M, Fehlner T P. Angew. Chem. Int. Ed., 2001, 40:4498-4501

    24. [24]

      [24] Yan H, Beatty A M, Fehlner T P. Angew. Chem. Int. Ed., 2002, 41:2578-2581

    25. [25]

      [25] Yan H, Beatty A M, Fehlner T P. J. Am. Chem. Soc., 2002, 124:10280-10281

    26. [26]

      [26] Zhang R, Zhu L, Lu Z Z, et al. Dalton Trans., 2012, 41: 12054-12063

  • 加载中
    1. [1]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    2. [2]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    5. [5]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    6. [6]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    18. [18]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

Metrics
  • PDF Downloads(0)
  • Abstract views(834)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return