Citation: WEI Yuan, KANG Shi-Zhao, LI Xiang-Qing, QIN Li-Xia, MU Jin. Effect of Cu-Ni Cocatalyst on Visible Photocatalytic Activity of TiO2 for Phenol Preparation[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1581-1589. doi: 10.11862/CJIC.2015.198 shu

Effect of Cu-Ni Cocatalyst on Visible Photocatalytic Activity of TiO2 for Phenol Preparation

  • Corresponding author: KANG Shi-Zhao, 
  • Received Date: 16 March 2015
    Available Online: 19 May 2015

    Fund Project: 国家自然科学基金项目(No.21301118) (No.21301118)上海市教委科技创新重点项目(No.13ZZ135)资助。 (No.13ZZ135)

  • The Cu-Ni co-modified TiO2-based photocatalytic system was fabricated using TiO2 nanoparticles as the main catalyst component by an impregnation process followed by a reduction procedure. The effect of Cu-Ni cocatalyst on the visible photocatalytic activity of TiO2 for phenol preparation was studied using benzene as the starting material and hydrogen peroxide as the oxidant. The action mechanism of Cu-Ni cocatalyst for the photocatalytic activity of TiO2 nanoparticles is discussed. The results show that the pure TiO2 nanoparticles do not have photocatalytic activity for the phenol production from benzene under visible light irradiation. In contrast, the photocatalytic activity of TiO2 nanoparticles can be enhanced obviously due to the introduction of Cu and Ni. The yield of phenol is 18% when the Cu-Ni co-modified TiO2 nanoparticles are used as a photocatalyst. Moreover, there exists noticeable synergistic effect between Cu and Ni. The Cu-Ni co-modified TiO2 nanoparticles exhibit much higher photocatalytic activity in comparison with that of the Cu or Ni alone modified ones due to the synergistic effect. These results imply that the cheap cocatalyst with outstanding performance than that of noble metals may be prepared by taking advantage of the synergistic effect between various metals.
  • 加载中
    1. [1]

      [1] Yang H, Wu Q, Li J, et al. Appl. Catal. A, 2013,457:21-25

    2. [2]

      [2] Koekkoek A J J, Kim W, Degirmenci V, et al. J. Catal., 2013,299:81-89

    3. [3]

      [3] Guo C, Du W D, Chen G, et al. Catal. Commun., 2013,37:19-22

    4. [4]

      [4] Yuan C Y, Gao X H, Pan Z S, et al. Catal. Commun., 2015, 58:215-218

    5. [5]

      [5] Schmid R J. Appl. Catal. A, 2005,280:89-103

    6. [6]

      [6] Hu L Y, Yue B, Chen X Y, et al. Catal. Commun., 2014,43:179-183

    7. [7]

      [7] Xu D, Jia L H, Guo X F. Chinese J. Catal., 2013,34:341-350

    8. [8]

      [8] Park H, Choi W. Catal. Today, 2005,101:291-297

    9. [9]

      [9] Devaraji P, Sathu N K, Gopinath C S. ACS Catal., 2014,4:2844-2853

    10. [10]

      [10] Yuzawa H, Aoki M, Otake K, et al. J. Phys. Chem. C, 2012, 116:25376-25387

    11. [11]

      [11] Ide Y, Matsuoka M, Ogawa M. J. Am. Chem. Soc., 2010, 132:16762-16764

    12. [12]

      [12] Zheng Z K, Huang B B, Qin X Y, et al. J. Mater. Chem., 2011,21:9079-9087

    13. [13]

      [13] Riaz N, Chong F K, Dutta B K, et al. Chem. Eng. J., 2012, 185-186:108-119

    14. [14]

      [14] Gao W L, Jin R C, Chen J X, et al. Catal. Today, 2004,90:331-336

    15. [15]

      [15] Tian H M, Kang S Z, Li X, et al. Sol. Energy Mater. Sol. Cells, 2015,134:309-317

    16. [16]

      [16] Lu H Q, Zhao B B, Pan R L, et al. RSC Adv., 2014,4:1128-1132

    17. [17]

      [17] WU Yu-Qi(吴玉琪), LÜ Gong-Xuan(吕功煊), LI Shu-Ben (李树本). Chinese J. Inorg. Chem.(无机化学学报), 2010,26(3):476-482

    18. [18]

      [18] YANG Li-Juan(杨立娟), LI Xiao-Wei(李晓伟), LIU Bin(刘斌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(10):1717-1722

    19. [19]

      [19] Behnajady M A, Eskandarloo H. Chem. Eng. J., 2013,228:1207-1213

    20. [20]

      [20] Li L Y, Xu Z Y, Liu F L, et al. J. Photochem. Photobiol. A, 2010,212:113-211

    21. [21]

      [21] Chen H, Zhou S X, Wu L M. ACS Appl. Mater. Interfaces, 2014,6:8621-8630

    22. [22]

      [22] Lee J W, Ahn T, Soundararajan D, et al. Chem. Commun., 2011,47:6305-6307

    23. [23]

      [23] Marino T, Molinari R, Garcia H. Catal. Today, 2013,206:40-45

    24. [24]

      [24] Sonawane R S, Dongare M K. J. Mol. Catal. A, 2006,243:68-76

    25. [25]

      [25] Jiang W F, Wang W, Wang H L, et al. Catal. Lett., 2009, 130:463-469

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(174)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return