Citation: WANG Ying, XUE Bing, LI Yi-Lin, LI Si-Nan, XU Chong-Fu. Extensive Hydrosilation of Acetyl Manganese Pentacarbonyl[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1393-1401. doi: 10.11862/CJIC.2015.194 shu

Extensive Hydrosilation of Acetyl Manganese Pentacarbonyl

  • Corresponding author: XU Chong-Fu, 
  • Received Date: 23 March 2015
    Available Online: 22 May 2015

    Fund Project: 国家自然科学基金(No.21376032)资助项目。 (No.21376032)

  • (CO)5MnCOCH3 (1) was synthesized in two steps. A solution 1 with Me2PhSiH in C6D6 was continuously monitored by 1H NMR spectroscopy for 9 h and reaction profile was established using timely contents (mmol) obtained by directly integrating chemical labels of the reactants and derivatives against that of the internal standard C6H5(CH2)2C6H5. 9 intermediates and final products emerged in the extensive hydrosilation were prepared and the molecular structures of the derivations generated in the reaction process were positively confirmed by comparison of their NMR spectra with that of real substances. All besides the 6 species that were quantified by direct integration of their chemical labels the other 3 were indirectly quantified by combination of chemical stoichiometry and integration of their chemical labels. Attempt was made to make plausible explanations for the origins of these species. Finally, a mechanism with multiple step reactions process and double pathways was proposed. More than 90.7% of the total manganese source was accounted for at 9 h and meanwhile that of more than 91.4% of the total silicon source was accounted for.
  • 加载中
    1. [1]

      [1] Gregg B T, Hanna P K, Crawford E J, et al. J. Am. Chem. Soc., 1991, 113(47):384-385

    2. [2]

      [2] Hanna P K, Gregg B T, CutlerA R. Organometallics, 1991, 10(1):31-33

    3. [3]

      [3] Ziegler T, Verslius L, Tschinke V J. J. Am. Chem. Soc., 1986, 108(21):612-614

    4. [4]

      [4] Axe F U, Marynick D S. Organometallics, 1987, 6(17):572-575

    5. [5]

      [5] Wegman R W. Organometallics, 1986, 5(3):707-710

    6. [6]

      [6] Kovacs I, Sisak A, Ungvary F, et al. Organometallics, 1988, 7 (10):1025-1029

    7. [7]

      [7] Glaysz J A. Acc. Chem. Res., 1984, 17(57):326-330

    8. [8]

      [8] Selover J C, Vaughn G D, Strouse C E, et al. J. Am. Chem. Soc., 1986, 108(11):1455-1457

    9. [9]

      [9] Vaughn G D, Glaysz J A. J. Am. Chem. Soc., 1986, 108(35): 1473-1475

    10. [10]

      [10] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1996, 118, 42 (19):10069-10084

    11. [11]

      [11] Krein K A, Gladysz J A. Organometallics, 1986, 5(15):936-940

    12. [12]

      [12] Mars M, Brinkman K C, Lisensky C A, et al. J. Org. Chem., 1985, 50(24):3396-3398

    13. [13]

      [13] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), CHEN Miao(陈苗), et al. Acta Chim. Sin.(化学学报), 2008, 66(10): 1239-1244

    14. [14]

      [14] Gregg B T, Cutler A R. Organometallics, 1994, 13(9):1039-1043

    15. [15]

      [15] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), XUE Bing (薛冰), et al. Acta Chim. Sin.(化学学报), 2011, 69(8):999-1006

    16. [16]

      [16] Gladysz J A, Williams G M, Tam W, et al. Inorg. Chem., 1979, 18(3):553-558

    17. [17]

      [17] Warner K E, Norton J R. Organometallics, 1985, 4(16):2150-2154

    18. [18]

      [18] Tan K Y D, Teng G F, Fan W Y. Organometallics, 2011, 30 (15):4136-4143

    19. [19]

      [19] Anderson G K. Acc. Chem. Res., 1984, 17(21):67-74

    20. [20]

      [20] Gregg B T, Cutler A R. Organometallics, 1998, 17(32):4169-4175

    21. [21]

      [21] Gray L M, Donald A T. Inorganic Chemistry. New Jersey: Prentice Hall, 1999:297

    22. [22]

      [22] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1995, 117(10): 10139-10140

    23. [23]

      [23] Mao Z, Gregg B T, Cutler A R. Organometallics, 1998, 17(10): 1993-2002

    24. [24]

      [24] Green M L H, Nagy P L I. J. Organomet. Chem., 1963, 1(27): 58-60

    25. [25]

      [25] Xu C F, Anderson G K A. Organometallics, 1996, 15(7):1760-1764

    26. [26]

      [26] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), XUE Bing (薛冰), et al. Acta Chim. Sin.(化学学报), 2009, 67(20):2355-2362

    27. [27]

      [27] LI Rong (厉荣), CHEN Peng-Gang(陈鹏刚). Chinese J. Inorg. Chem.(无机化学学报), 2008, 24(20):657-660

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    12. [12]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(322)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return