Citation:
ZHANG Qiu-Lin, XU Li-Si, LIU Xin, NING Ping. Effect of P123 on Structure and CO Catalytic Oxidation Performance of CuO-CeO2 Catalysts[J]. Chinese Journal of Inorganic Chemistry,
;2015, 31(8): 1555-1562.
doi:
10.11862/CJIC.2015.192
-
A series of CuO-CeO2 (nCu:nCe=1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3) catalysts with different Cu/Ce molar ratios (nCu:nCe) were prepared by soft template hydrothermal method. The effect of nCu:nCe and preparation methods (soft template hydrothermal method and co-precipitation without template method) on CO catalytic oxidation performance was investigated, and the structure, reduction features and surface chemical states of the CuO-CeO2 catalysts were characterized by XRD, TEM, low temperature adsorption-desorption, temperature programmed reduction (H2-TPR) and XPS. The results show that with the increase of nCu:nCe, the CO catalytic oxidation activities of CuO-CeO2 catalysts increase firstly and then decrease. When the nCu:nCe is 5:5, the CO catalytic oxidation activity of the catalyst is more than 90% at 100℃. The large specific surface area, narrow pore structure distribution, high dispersion of active CuO species and the strong interaction between CuO and CeO2 of CuO-CeO2 catalyst prepared by soft template hydrothermal method are the main factors for its excellent CO catalytic oxidation activity.
-
-
-
[1]
[1] Qin J W, Lu J F, Cao M H, et al. Nanoscale, 2010,2:2739-2743
-
[2]
[2] Kalamaras C M, Americanou S, Efstathiou A M. J. Catal., 2011,279:287-300
-
[3]
[3] Kim J R, Myeong W J, Ihm Son-Ki. J. Catal., 2009,263:123-133
-
[4]
[4] Luo J Y, Meng M, Zha Y Q, et al. J. Phys. Chem. C, 2008, 112(23):8694-870
-
[5]
[5] Zheng X, Wang S, Zhang S, et al. Catal. Commun., 2004,5:729-732
-
[6]
[6] Zhu J, Zhang L, Deng Y, et al. Appl. Catal. B:Environ., 2010,96:449-457
-
[7]
[7] Luo M F, Song Y P, Lu J Q, et al. J. Phys. Chem. C, 2007, 111:12686-12692
-
[8]
[8] Skårman B, Grandjean D, Benfield R E, et al. J. Catal., 2002, 211:119-133
-
[9]
[9] Rao K N, Bharali P, Thrimurthulu G, et al. Catal. Commun., 2010,11:863-866
-
[10]
[10] Kundakovic L, Flytzani-Stephanopoulos M. Appl. Catal. A:Gen., 1998,171(1):13-29
-
[11]
[11] Kundakovic L, Flytzani-Stephanopoulos M. J. Catal., 1998, 179(1):203-221
-
[12]
[12] Xie X W, Li Y, Liu Z Q, et al. Nature, 2009,458:746-749
-
[13]
[13] Avgouropoulos G, Ioannides T. Appl. Catal. B:Environ., 2006,67(1/2):1-11
-
[14]
[14] Lee H C, Kim D H. Catal. Today, 2008,132:109-116
-
[15]
[15] Jung C R, Han J, Nam S W, et al. Catal. Today, 2004,93-95:183-190
-
[16]
[16] Zou H B, Chen S Z, Liu Z L, et al. Powder Technol., 2011, 207:238-244
-
[17]
[17] Wang W W, Du P P, Zou S H, et al. ACS Catal., 2015,5:2088-2099
-
[18]
[18] Li L, Song L, Wang H, et al. Int. J. Hydrogen Energy, 2011, 36:8839-8849
-
[19]
[19] Bera P, Aruna S T, Patil K C, et al. J. Catal., 1999,186(1):36-44
-
[20]
[20] Astudilloa J, Águilab G, Díaz F, et al. Appl. Catal. A:Gen., 2010,381:169-176
-
[21]
[21] Chadwick A V, Savin S L P. J. Alloys Compd., 2009,488:1-4
-
[22]
[22] Sedmak G, Hocevar S, Levec J. J. Catal., 2003,213(2):135-150
-
[23]
[23] Gu D, Jia C J, Bongard H, et al. Appl. Catal. B:Environ., 2014,152-153:11-18
-
[24]
[24] Tang C J, Sun J F, Yao X J, et al. Appl. Catal. B:Environ., 2014,146:201-212
-
[25]
[25] Pérez N C, Miró E E, Zamaro J M. Appl. Catal. B:Environ., 2013,129:416-425
-
[26]
[26] Zhou G L, Lan H, Song R Y, et al. RSC Adv., 2014,4:50840-50850
-
[27]
[27] Niu K, Shi D J, Dong W F, et al. J. Coll. Interf. Sci., 2011, 362(1):74-80
-
[28]
[28] Wang Z, Qu Z P, Quan X, et al. Appl. Catal. B:Environ., 2013,134-135:153-166
-
[29]
[29] Zou Z Q, Meng Ming, Guo L H, et al. J. Hazard. Mater., 2009,163:835-842
-
[30]
[30] Vidal H,Kǎspar J, Pijolat M, et al. Appl. Catal. B:Environ., 2000,27(1):49-63
-
[31]
[31] Morris S M, Horton J A, Jaroniec M. Microporous Mesopor. Mater., 2010,128:180-186
-
[32]
[32] Łamacz A, Krzto A, Djéga-Mariadassou G. Appl. Catal. B:Environ., 2013,142-143:268-277
-
[33]
[33] Vidal H,Kǎspar J, Pijolat M, et al. Appl. Catal. B:Environ., 2000,27(1):49-63
-
[34]
[34] Zeng S H, Wang Y, Liu K, et al. Int. J. Hydrogen Energy, 2012,37(16):11640-11649
-
[35]
[35] ZHANG Li-Ping(张丽萍), WAN Hai-Qin(万海勤), ZHU Jie (朱捷), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(3):427-431
-
[36]
[36] Fan J, Wu X D, Wu X D, et al. Appl. Catal. B:Environ., 2008,81(1/2):38-48
-
[37]
[37] Zeng S H, Zhang W L, Sliwa M, et al. Int. J. Hydrogen Energy, 2013,38(9):3597-3605
-
[38]
[38] LI Zhi-Hong(李志红), HUANG Wei(黄伟), ZUO Zhi-Jun(左志军), et al. Chinese J. Catal.(催化学报), 2009,30(2):171-177
-
[39]
[39] Chen W T, Jovic V, Sun-Waterhouse D X, et al. Int. J. Hydrogen Energy, 2013,38(35):15036-15048
-
[1]
-
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[4]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[5]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[9]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[10]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[15]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[16]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[17]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[18]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[19]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[20]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(359)
- HTML views(62)