Citation: GU Ling, REN Dong-Hong, LIU Zhi-Ming, SUN Xiao-Li, QIU Dan, GU Zhi-Guo, . Two Homochiral Spin-Crossover Iron(Ⅱ) Complexes Based on Bidentate Imidazole Schiff Base Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1357-1364. doi: 10.11862/CJIC.2015.183 shu

Two Homochiral Spin-Crossover Iron(Ⅱ) Complexes Based on Bidentate Imidazole Schiff Base Ligands

  • Corresponding author: GU Zhi-Guo, 
  • Received Date: 4 March 2015
    Available Online: 8 May 2015

    Fund Project: 国家自然科学基金(No.21101078, 21276105) (No.21101078, 21276105) 新世纪优秀人才计划(No.NCET-11-0657) (No.NCET-11-0657)

  • Based on the bidentate schiff base ligands involving phenyl and imidazole groups, two homochiral mononuclear spin-crossover iron(Ⅱ) complexes, fac-Δ-[Fe(S-L1)3][ClO4]2 (1), mer-Λ-[Fe(R-L2)3][ClO4]2·Et2O (2) (L1=1-parachlorophenyl-N-(1-n-propylenyl-1H-imidazol-2-ylmethylene)ethanamine; L2=1-phenyl-N-(1-iso-butenyl-1H-imidazol-2-ylmethylene)ethanamine) have been synthesized. The two complexes have been determined by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, 1H NMR spectra, UV spectra and CD spectra. X-ray crystallography revealed that the iron(Ⅱ) center in 1 and 2 assumed an octahedral coordination environment with 6 N donor atoms from three unsymmetrical bidentate chiral schiff base ligands. Each unit contained one [Fe(Ln)3]2+ cation and two ClO4- anions in 1. While 2 contained two [Fe(Ln)3]2+ cation, four ClO4- anions and one diethyl ether molecular. [Fe(Ln)3]2+ components were chiral with single configuration due to the screw coordination arrangement of the chiral ligand around Fe(Ⅱ) centers. The Fe(Ⅱ)-N bond distances indicated that the Fe(Ⅱ) sites of 1 were in low-spin state, while the Fe(Ⅱ) centers of 2 were in high-spin state. As for [Fe(Ln)3]2+, intramolecular π-π interactions were present between phenyl group and imidazole ring of an adjacent ligand. In 1 and 2, supramolecular architectures were formed through intermolecular C-H…π and/or C-Cl…π interactions. Circular dichromism spectra confirmed the presence of non-racemic chiral metal centers in solution for complexes 1 and 2. Magnetic measurements revealed that 1 and 2 displayed obviously spin-crossover behaviour at 372 K and 146 K, respectively. Complexes 1 and 2 crystallized in different packing modes and intermolecular interactions, therefore their SCO bahaviors were different.
  • 加载中
    1. [1]

      [1] Halcrow M A. Chem. Soc. Rev., 2011, 40:4119-4142

    2. [2]

      [2] Gütlich P, Hauser A, Spiering H. Angew. Chem., Int. Ed., 1994, 33:2024-2054

    3. [3]

      [3] Guionneau P. Dalton Trans., 2014, 43:382-393

    4. [4]

      [4] Rikken G L J A, Raupach E. Nature, 1997, 390:493-494

    5. [5]

      [5] Barron L D. Nature, 2000, 405:895-896

    6. [6]

      [6] (a)Marcelo C, Sara G F, Ramon G M J. Adv. Mater., 2012, 24: 3120-3123

    7. [7]

      (b)Cai H L, Zhang Y, Fu D W, et al. J. Am. Chem. Soc., 2012, 134:18487-18490

    8. [8]

      (c)Xu G C, Zhang W, Ma X M, et al. J. Am. Chem. Soc., 2011, 133:14948-14951

    9. [9]

      [7] Train C, Gheorghe R, Krstic V, et al. Nat. Mater., 2008, 7: 729-734

    10. [10]

      [8] (a)Fu D W, Zhang W, Cai H L, et al. Angew. Chem. Int. Ed., 2011, 50:11947-11951

    11. [11]

      (b)Liu C M, Xiong R G, Zhang D Q, et al. J. Am. Chem. Soc., 2010, 132:4044-4045

    12. [12]

      (c)Cui H B, Wang Z M, Takahashi K, et al. J. Am. Chem. Soc., 2006, 128:15074-15075

    13. [13]

      (d)Ohkoshi S I, Tokoro H, Matsuda T, et al. Angew. Chem. Int. Ed., 2007:3302-3305

    14. [14]

      [9] International Union of Pure and Applied Chemistry, Nome-nclature of Inorganic Chemistry, Recommendation. Oxford: Blackwell Scientific Publications, 1990.

    15. [15]

      [10] Cynthia P S, Suzanne E H, Guy J C, et al. Dalton Trans., 2010, 39:4447-4454

    16. [16]

      [11] Alexander J. M, William C, Andrew S, et al. Dalton Trans., 2014, 43:71-84

    17. [17]

      [12] Suzanne E H, Peter S. Dalton Trans., 2011, 40:10268-10277

    18. [18]

      [13] Lacour J, Torche-Haldimann S, Jodry J J, et al. Chem. Commun., 1998:1733-1734

    19. [19]

      [14] Gao E Q, Yue Y F, Bai S Q, et al. J. Am. Chem. Soc., 2004, 126:1419-1429

    20. [20]

      [15] Tabellion F M, Seidel S R, Arif A M, et al. Angew. Chem., Int. Ed., 2001, 40:1529-1532

    21. [21]

      [16] Rajesh C, Partha S M, Peter J S. J. Am. Chem. Soc., 2011, 111:6810-6918

    22. [22]

      [17] Wu J J, Cao M L, Bao H. J. Am. Chem. Soc., 2010, 46:3687-3689

    23. [23]

      [18] Suzanne E H, Laura E N, Nikola P C, et al. Dalton Trans., 2011, 40:10416-10433

    24. [24]

      [19] Suzanne E H, Laura E N, Nikola P C, et al. Chem. Commun., 2009:1727-1729

    25. [25]

      [20] Suzanne E H, Guy J C, Alan D F, et al. Dalton Trans., 2013, 42:14967-14981

    26. [26]

      [21] SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    27. [27]

      [22] Sheldrick G M. SADABS, An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    28. [28]

      [23] Sheldrick G M. SHELXTL-97, University of Göttingen, Göttingen, Germany, 1997.

    29. [29]

      [24] Nishida Y, Kino K, Kida S. Dalton Trans., 1987, 5:1157-1161

    30. [30]

      [25] Koenig E. Prog. Inorg. Chem., 1987, 35:527-623

    31. [31]

      [26] Crassous J. Chem. Soc. Rev., 2009, 38:830-845

    32. [32]

      [27] Vankó G, Glatzel P, Pham V T, et al. Angew. Chem. Int. Ed., 2010, 49:5910-5912

    33. [33]

      [28] Yamada M, Hagiwara H, Torigoe H. Eur. J. Inorg. Chem., 2006, 12:4536-4549

    34. [34]

      [29] Nishi K, Matsumoto N, Iijima S. Inorg. Chem., 2011, 50: 11303-11305

    35. [35]

      [30] Verdejo B, Gil-Ramirez G, Ballester P. J. Am. Chem. Soc., 2009, 131:3178-3179

    36. [36]

      [31] Matouzenko G S, Jeanneau E, Verat A Y, et al. Dalton Trans., 2011, 40:9608-9618

    37. [37]

      [32] Takahashi O, Kohno Y, Nishio M. Chem. Rev., 2010, 110: 6049-6076

    38. [38]

      [33] Zhang W, Zhao F, Liu, T, et al. Inorg. Chem., 2007, 46:2541-2555

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    12. [12]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(0)
  • Abstract views(199)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return