Citation: CHEN Qing-Hua, YI Qing-Feng. Effect of Ligands on Formation and Electroactivity for Ethanol Oxidation of Pd Nano-Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1145-1152. doi: 10.11862/CJIC.2015.171 shu

Effect of Ligands on Formation and Electroactivity for Ethanol Oxidation of Pd Nano-Catalysts

  • Corresponding author: YI Qing-Feng, 
  • Received Date: 30 December 2014
    Available Online: 26 April 2015

    Fund Project: 国家自然科学基金(No.21376070,20876038) (No.21376070,20876038)湖南省自然科学基金(No.14JJ2096)资助项目。 (No.14JJ2096)

  • Multi-walled carbon nano-tube (MWCNT)-supported palladium nano-catalysts (Pd-EDTA/MWCNT, Pd-Gly/MWCNTand Pd-Ls/MWCNT) were prepared by supporting Pd nano-particles on MWCNT. The Pd nano-particles were obtained from reduction of Pd2+ with NaBH4 as the reducing agent in the presence of EDTA, Glycine(Gly), and sodium lignin sulfonate(Ls) as the ligand, separately. The catalysts were characterized by SEM, TEMand XRD. The electrochemical activity of the catalysts towards ethanol oxidation in alkaline media was examined by cyclic voltammetry (CV) and chronoamperometry (CA). The characterization results show that the Pd-EDTA/MWCNTcatalyst exhibits a smaller particle size and a better dispersity of Pd nanoaprticles compared to the Pd-Gly/MWCNTand Pd-Ls/MWCNTcatalysts. As for the ethanol oxidation in alkaline media, the Pd-EDTA/MWCNTcatalyst exhibits a lower onset potential, a higher current density, a smaller electron transfer resistance, a larger reaction rate, and more stable oxidation current, in comparison with the other two catalysts.
  • 加载中
    1. [1]

      [1] Barragán V M, Heinzel A. J. Power Sources, 2002,104(1):66 -72

    2. [2]

      [2] Rousseau S, Coutanceau C, Lamy C, et al. J. Power Sources, 2006,158(1):18-24

    3. [3]

      [3] ZHU Ke(朱科), CHEN Yan-Xi(陈延禧), ZHANG Ji-Yan(张 继炎). Chinese J. Power Sources(电源技术), 2004,28(3):187-190

    4. [4]

      [4] Zhou W J, Zhou Z H, Song S Q, et al. Appl. Catal. B: Environ., 2003,46(2):273-285

    5. [5]

      [5] Iwasita T. Electrochim. Acta, 2002,47(22/23):3663-3674

    6. [6]

      [6] CHEN Yu(陈煜). Thesis for the Master of Nanjing Normal University(南京师范大学硕士论文). 2006.

    7. [7]

      [7] JIANG Lu-Hua(姜鲁华). Thesis for the Doctorate of Graduate University of Chinese Academy of Sciences(Dalian Institute of Chemical Physics)(中国科学院研究生院(大连化学物理 研究所)), 2005.

    8. [8]

      [8] LUO Bin(罗彬), ZHOU Di-Bi(周地璧), ZHAO Da-Peng(赵大 鹏), et al. Mater. Rev.(China)(材料导报), 2007,21(6):288-291

    9. [9]

      [9] Lamy C, Lima A, LeRhun V, et al. J. Power Sources, 2002, 105(2):283-296

    10. [10]

      [10] Habibi E, Bidad E, Feizbakhsh A, et al. Inter. J. Hydrogen Energy, 2014,39(32):18416-18423

    11. [11]

      [11] ZENG Xiang-An(曾湘安). J. Graduates, SUN YET-SEN Univ.: Natural Sciences, Medicine(中山大学研究生学刊:自然科 学,医学版), 2010,31(3):9-16

    12. [12]

      [12] Xu C W, Shen P K, Liu Y L. J. Power Sources, 2007,164 (2):527-531

    13. [13]

      [13] Ma L, Chu D, Chen R R. Inter. J. Hydrogen Energy, 2012, 37(15):11185-11194

    14. [14]

      [14] Xu C W, Tian Z Q, Chen Z C, et al. Electrochem. Commun., 2008,10(2):246-249

    15. [15]

      [15] Li Z P, Li J F, Wu X, et al. Sens. Actuattors B: Chem., 2009, 139(2):453-459

    16. [16]

      [16] Singh P, Kulkarni M V, Gokhale S P, et al. Appl. Surf. Sci., 2012,258(8):3405-3409

    17. [17]

      [17] Yi Q F, Chu H, Chen Q H, et al. Electroanal., 2015,27:388-397

    18. [18]

      [18] Yi Q F, Niu F J. Thin Solid Films, 2011,519(10):3155-3161

    19. [19]

      [19] SUN Gang-Wei(孙刚伟). Thesis for the doctor of East China University of Science and Technology(华东理工大学博士 论文). 2012.

    20. [20]

      [20] Bard A J, Faulknler L R. Translated by SHAO Yuan-Hua (邵元华), ZHU Guo-Yi(朱果逸), DONG Xian-Dui(董献堆). Electrochemical Methods: Fundamentals and Applications (电化学方法原理和应用). Beijing: Chemical Industry Press, 2005.

    21. [21]

      [21] Liu J P, Ye J Q, Xu C W, et al. Electrochem. Commun., 2007,9:2334-2339

    22. [22]

      [22] Modibedi R M, Masombuka T, Mathe M K. Inter. J. Hydrogen Energy, 2011,36(8):4664-4672

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    13. [13]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return