Citation: SUN Hai-Jie, ZHOU Xiao-Li, ZHAO Ai-Juan, WANG Zhen-Zhen, LIU Shou-Chang, LIU Zhong-Yi. Selective Hydrogenation of Benzene to Cyclohexene over Nano-Sized Ru Catalyst Modified by Zn4Si2O7(OH)2H2O Salt[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1287-1295. doi: 10.11862/CJIC.2015.162 shu

Selective Hydrogenation of Benzene to Cyclohexene over Nano-Sized Ru Catalyst Modified by Zn4Si2O7(OH)2H2O Salt

  • Corresponding author: LIU Zhong-Yi, 
  • Received Date: 7 February 2015
    Available Online: 17 April 2015

    Fund Project: 国家自然科学基金(No.21273205, U1304204) (No.21273205, U1304204)河南省博士后科研项目(No.2013006)资助项目。 (No.2013006)

  • A nano-sized Ru catalyst was prepared using the precipitation method. The performance of the catalyst for selective hydrogenation of benzene to cyclohexene with Na2SiO3·9H2O and diethanolamine as modifiers was investigated in the presence of ZnSO4. The catalyst after and before hydrogenation was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The results show that Na2SiO3 in the solution could react with ZnSO4 to form a Zn4Si2O7(OH)2H2O salt, H2SO4 and Na2SO4, and the Zn4Si2O7(OH)2H2O salt chemisorbed on the surface of the Ru catalyst plays a key role in improving the selectivity to cyclohexene of the Ru catalyst. The increased dosage of Na2SiO3·9H2O will result in the increased amount of the formed Zn4Si2O7(OH)2H2O salt, the decreased activity of the Ru catalyst and the increased selectivity to cyclohexene. The diethanolamine added into the slurry could neutralize the H2SO4 formed by reacting Na2SiO3 with ZnSO4. This could shift the chemical equilibrium to the direction of the formation of the Zn4Si2O7(OH)2H2O salt, resulting in the increase of the selectivity to cyclohexene of the Ru catalyst. When the mass ratio of the Ru catalyst, ZnSO4·7H2O, Na2SiO3·9H2O, diethanolamine and the dispersant ZrO2 was at 1.0:24.6:0.4:0.2:5.0, 2 g of the Ru catalyst will give a selectivity to cyclohexene of 75% and a cyclohexene yield of 55% at a benzene conversion of 73%. Moreover, this catalytic system shows a good reusability and an excellent stability.
  • 加载中
    1. [1]

      [1] Liao H G, Ouyang D H, Zhang J, et al. Chem. Eng. J., 2014, 243:207-216

    2. [2]

      [2] Sun H J, Dong Y Y, Li S H, et al. J. Mol. Catal. A: Chem., 2013, 368-369:119-124

    3. [3]

      [3] Ning J B, Xu J, Liu J, et al. Catal. Lett., 2006, 109:175-180

    4. [4]

      [4] ZHANG Ye(张晔), FU Hai-Yan(付海燕), LI Rui-Xiang(李瑞祥), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29: 577-582

    5. [5]

      [5] WEI Jun-Fang(魏珺芳), WANG Yan-Ji(王延吉), LI Juan(励娟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27:850-854

    6. [6]

      [6] LU Fang(路芳), LIU Jing(刘菁), XU Jie(徐杰). Prog. Chem. (化学进展), 2003, 15:338-343

    7. [7]

      [7] SUN Hai-Jie(孙海杰), GUO Wei(郭伟), ZHOU Xiao-Li(周小莉), et al. Chinese J. Catal.(催化学报), 2011, 32:1-16

    8. [8]

      [8] Struijk J, Moene R, Kamp T V D, et al. Appl. Catal. A: Gen., 1992, 89:77-102

    9. [9]

      [9] SUN Hai-Jie(孙海杰), LI Shuai-Hui(李帅辉), TIAN Xiang-Yu(田翔宇), et al. J. Mol. Catal.(China)(分子催化), 2013, 27:362-370

    10. [10]

      [10] Sun H J, Jiang H B, Li S H, et al. Chem. Eng. J., 2013, 218: 415-424

    11. [11]

      [11] Fan G Y, Li R X, Li X J, et al. Catal. Commun., 2008, 9: 1394-1397

    12. [12]

      [12] SUN Hai-Jie(孙海杰), PAN Ya-Jie(潘雅洁), WANG Hong-Xia(王红霞), et al. Chinese J. Catal.(催化学报), 2012, 33: 610-620

    13. [13]

      [13] Struijk J, d'Angremond M, Regt W J M L, et al. Appl. Catal. A: Gen., 1992, 83:263-295

    14. [14]

      [14] LIU Zhong-Yi(刘仲毅), SUN Hai-Jie(孙海杰), WANG Dong-Bin(王栋斌), et al. Chinese J. Catal.(催化学报), 2010, 31: 150-152

    15. [15]

      [15] Liu H Z, Jiang T, Han B X, et al. Science, 2009, 326:1250-1252

    16. [16]

      [16] Liu J L, Zhu Y, Liu J, et al. J. Catal., 2009, 268:100-105

    17. [17]

      [17] Sun H J, Pan Y J, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 464-465:1-9

    18. [18]

      [18] Sun H J, Wang H X, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 450:160-168

    19. [19]

      [19] WANG Chun-Ming(王春明), ZHAO Bi-Ying(赵璧英), XIE You-Chang(谢有畅). Chinese J. Catal.(催化学报), 2003, 24: 475-482

    20. [20]

      [20] WANG Song-Rui(王松蕊), ZHU Yue-Xiang(朱月香), XIE You-Chang(谢有畅), et al. Chinese J. Catal.(催化学报), 2007, 28:676-680

    21. [21]

      [21] Struijk J, Scholten J J F. Appl. Catal. A: Gen., 1992, 82:277-287

    22. [22]

      [22] WU Ji-Min(吴济民), YANG Yan-Feng(杨炎锋), CHEN Ju-Liang(陈聚良). Chem. Ind. Eng. Prog.(化工进展), 2003, 22: 295-297

  • 加载中
    1. [1]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(0)
  • Abstract views(833)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return