Citation: SUN Hai-Jie, ZHOU Xiao-Li, ZHAO Ai-Juan, WANG Zhen-Zhen, LIU Shou-Chang, LIU Zhong-Yi. Selective Hydrogenation of Benzene to Cyclohexene over Nano-Sized Ru Catalyst Modified by Zn4Si2O7(OH)2H2O Salt[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1287-1295. doi: 10.11862/CJIC.2015.162 shu

Selective Hydrogenation of Benzene to Cyclohexene over Nano-Sized Ru Catalyst Modified by Zn4Si2O7(OH)2H2O Salt

  • Corresponding author: LIU Zhong-Yi, 
  • Received Date: 7 February 2015
    Available Online: 17 April 2015

    Fund Project: 国家自然科学基金(No.21273205, U1304204) (No.21273205, U1304204)河南省博士后科研项目(No.2013006)资助项目。 (No.2013006)

  • A nano-sized Ru catalyst was prepared using the precipitation method. The performance of the catalyst for selective hydrogenation of benzene to cyclohexene with Na2SiO3·9H2O and diethanolamine as modifiers was investigated in the presence of ZnSO4. The catalyst after and before hydrogenation was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The results show that Na2SiO3 in the solution could react with ZnSO4 to form a Zn4Si2O7(OH)2H2O salt, H2SO4 and Na2SO4, and the Zn4Si2O7(OH)2H2O salt chemisorbed on the surface of the Ru catalyst plays a key role in improving the selectivity to cyclohexene of the Ru catalyst. The increased dosage of Na2SiO3·9H2O will result in the increased amount of the formed Zn4Si2O7(OH)2H2O salt, the decreased activity of the Ru catalyst and the increased selectivity to cyclohexene. The diethanolamine added into the slurry could neutralize the H2SO4 formed by reacting Na2SiO3 with ZnSO4. This could shift the chemical equilibrium to the direction of the formation of the Zn4Si2O7(OH)2H2O salt, resulting in the increase of the selectivity to cyclohexene of the Ru catalyst. When the mass ratio of the Ru catalyst, ZnSO4·7H2O, Na2SiO3·9H2O, diethanolamine and the dispersant ZrO2 was at 1.0:24.6:0.4:0.2:5.0, 2 g of the Ru catalyst will give a selectivity to cyclohexene of 75% and a cyclohexene yield of 55% at a benzene conversion of 73%. Moreover, this catalytic system shows a good reusability and an excellent stability.
  • 
    1. [1]

      [1] Liao H G, Ouyang D H, Zhang J, et al. Chem. Eng. J., 2014, 243:207-216

    2. [2]

      [2] Sun H J, Dong Y Y, Li S H, et al. J. Mol. Catal. A: Chem., 2013, 368-369:119-124

    3. [3]

      [3] Ning J B, Xu J, Liu J, et al. Catal. Lett., 2006, 109:175-180

    4. [4]

      [4] ZHANG Ye(张晔), FU Hai-Yan(付海燕), LI Rui-Xiang(李瑞祥), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29: 577-582

    5. [5]

      [5] WEI Jun-Fang(魏珺芳), WANG Yan-Ji(王延吉), LI Juan(励娟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27:850-854

    6. [6]

      [6] LU Fang(路芳), LIU Jing(刘菁), XU Jie(徐杰). Prog. Chem. (化学进展), 2003, 15:338-343

    7. [7]

      [7] SUN Hai-Jie(孙海杰), GUO Wei(郭伟), ZHOU Xiao-Li(周小莉), et al. Chinese J. Catal.(催化学报), 2011, 32:1-16

    8. [8]

      [8] Struijk J, Moene R, Kamp T V D, et al. Appl. Catal. A: Gen., 1992, 89:77-102

    9. [9]

      [9] SUN Hai-Jie(孙海杰), LI Shuai-Hui(李帅辉), TIAN Xiang-Yu(田翔宇), et al. J. Mol. Catal.(China)(分子催化), 2013, 27:362-370

    10. [10]

      [10] Sun H J, Jiang H B, Li S H, et al. Chem. Eng. J., 2013, 218: 415-424

    11. [11]

      [11] Fan G Y, Li R X, Li X J, et al. Catal. Commun., 2008, 9: 1394-1397

    12. [12]

      [12] SUN Hai-Jie(孙海杰), PAN Ya-Jie(潘雅洁), WANG Hong-Xia(王红霞), et al. Chinese J. Catal.(催化学报), 2012, 33: 610-620

    13. [13]

      [13] Struijk J, d'Angremond M, Regt W J M L, et al. Appl. Catal. A: Gen., 1992, 83:263-295

    14. [14]

      [14] LIU Zhong-Yi(刘仲毅), SUN Hai-Jie(孙海杰), WANG Dong-Bin(王栋斌), et al. Chinese J. Catal.(催化学报), 2010, 31: 150-152

    15. [15]

      [15] Liu H Z, Jiang T, Han B X, et al. Science, 2009, 326:1250-1252

    16. [16]

      [16] Liu J L, Zhu Y, Liu J, et al. J. Catal., 2009, 268:100-105

    17. [17]

      [17] Sun H J, Pan Y J, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 464-465:1-9

    18. [18]

      [18] Sun H J, Wang H X, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 450:160-168

    19. [19]

      [19] WANG Chun-Ming(王春明), ZHAO Bi-Ying(赵璧英), XIE You-Chang(谢有畅). Chinese J. Catal.(催化学报), 2003, 24: 475-482

    20. [20]

      [20] WANG Song-Rui(王松蕊), ZHU Yue-Xiang(朱月香), XIE You-Chang(谢有畅), et al. Chinese J. Catal.(催化学报), 2007, 28:676-680

    21. [21]

      [21] Struijk J, Scholten J J F. Appl. Catal. A: Gen., 1992, 82:277-287

    22. [22]

      [22] WU Ji-Min(吴济民), YANG Yan-Feng(杨炎锋), CHEN Ju-Liang(陈聚良). Chem. Ind. Eng. Prog.(化工进展), 2003, 22: 295-297

    1. [1]

      [1] Liao H G, Ouyang D H, Zhang J, et al. Chem. Eng. J., 2014, 243:207-216

    2. [2]

      [2] Sun H J, Dong Y Y, Li S H, et al. J. Mol. Catal. A: Chem., 2013, 368-369:119-124

    3. [3]

      [3] Ning J B, Xu J, Liu J, et al. Catal. Lett., 2006, 109:175-180

    4. [4]

      [4] ZHANG Ye(张晔), FU Hai-Yan(付海燕), LI Rui-Xiang(李瑞祥), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29: 577-582

    5. [5]

      [5] WEI Jun-Fang(魏珺芳), WANG Yan-Ji(王延吉), LI Juan(励娟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27:850-854

    6. [6]

      [6] LU Fang(路芳), LIU Jing(刘菁), XU Jie(徐杰). Prog. Chem. (化学进展), 2003, 15:338-343

    7. [7]

      [7] SUN Hai-Jie(孙海杰), GUO Wei(郭伟), ZHOU Xiao-Li(周小莉), et al. Chinese J. Catal.(催化学报), 2011, 32:1-16

    8. [8]

      [8] Struijk J, Moene R, Kamp T V D, et al. Appl. Catal. A: Gen., 1992, 89:77-102

    9. [9]

      [9] SUN Hai-Jie(孙海杰), LI Shuai-Hui(李帅辉), TIAN Xiang-Yu(田翔宇), et al. J. Mol. Catal.(China)(分子催化), 2013, 27:362-370

    10. [10]

      [10] Sun H J, Jiang H B, Li S H, et al. Chem. Eng. J., 2013, 218: 415-424

    11. [11]

      [11] Fan G Y, Li R X, Li X J, et al. Catal. Commun., 2008, 9: 1394-1397

    12. [12]

      [12] SUN Hai-Jie(孙海杰), PAN Ya-Jie(潘雅洁), WANG Hong-Xia(王红霞), et al. Chinese J. Catal.(催化学报), 2012, 33: 610-620

    13. [13]

      [13] Struijk J, d'Angremond M, Regt W J M L, et al. Appl. Catal. A: Gen., 1992, 83:263-295

    14. [14]

      [14] LIU Zhong-Yi(刘仲毅), SUN Hai-Jie(孙海杰), WANG Dong-Bin(王栋斌), et al. Chinese J. Catal.(催化学报), 2010, 31: 150-152

    15. [15]

      [15] Liu H Z, Jiang T, Han B X, et al. Science, 2009, 326:1250-1252

    16. [16]

      [16] Liu J L, Zhu Y, Liu J, et al. J. Catal., 2009, 268:100-105

    17. [17]

      [17] Sun H J, Pan Y J, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 464-465:1-9

    18. [18]

      [18] Sun H J, Wang H X, Jiang H B, et al. Appl. Catal. A: Gen., 2013, 450:160-168

    19. [19]

      [19] WANG Chun-Ming(王春明), ZHAO Bi-Ying(赵璧英), XIE You-Chang(谢有畅). Chinese J. Catal.(催化学报), 2003, 24: 475-482

    20. [20]

      [20] WANG Song-Rui(王松蕊), ZHU Yue-Xiang(朱月香), XIE You-Chang(谢有畅), et al. Chinese J. Catal.(催化学报), 2007, 28:676-680

    21. [21]

      [21] Struijk J, Scholten J J F. Appl. Catal. A: Gen., 1992, 82:277-287

    22. [22]

      [22] WU Ji-Min(吴济民), YANG Yan-Feng(杨炎锋), CHEN Ju-Liang(陈聚良). Chem. Ind. Eng. Prog.(化工进展), 2003, 22: 295-297

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(613)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return