Citation: ZHENG An-Hua, YANG Xue-Lin, XIA Dong-Dong, WU Xuan, WEN Zhao-Yin. Effect of Heat Treatment Temperature on Electrochemical Performance of Graphite Composite Anode for Lithium Ion Battery[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1159-1164. doi: 10.11862/CJIC.2015.158 shu

Effect of Heat Treatment Temperature on Electrochemical Performance of Graphite Composite Anode for Lithium Ion Battery

  • Corresponding author: YANG Xue-Lin, 
  • Received Date: 10 March 2015
    Available Online: 15 April 2015

    Fund Project: 国家自然科学基金(No.51272128) (No.51272128)湖北省自然科学基金(No.2014CFB667)资助项目。 (No.2014CFB667)

  • The graphite composite (G/C) anode was prepared by spray drying and high temperature sintering using natural spherical graphite as raw material and citric acid as carbon source. X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) were used to characterize crystal structure and morphology of samples. Galvanostatic charge-discharge tests and cyclic voltammentry (CV) were utilized to study the effect of heat treatment temperature on electrochemical performance of G/C anode. With typical voltage feature of graphite anode, G/C-2900 sample shows higher capacity than commercial graphite anode. The charge capacity of the G/C-2900 after the first activation is 423 mAh·g-1, and the 100th charge capacity is 416 mAh·g-1 with capacity retention rate of 98%.
  • 加载中
    1. [1]

      [1] Rüdorff W, Hofmann U. Zeitschrift Für Anorganische und Allgemeine Chemie, 1938,238(1):1-50

    2. [2]

      [2] van Schalkwijk W A, Scrosati B. Advances in Lithium-Ion Batteries. New York: Kluwer Academic/Plenum Publishers, 2002:85-103

    3. [3]

      [3] Fujimoto H. J. Power Sources, 2010,195:5019-5024

    4. [4]

      [4] Kida Y, Yanagida K, Funahashi A, et al. J. Power Sources, 2001,94(1):74-77

    5. [5]

      [5] Wang H, Abe T, Maruyama S, et al. Adv. Mater., 2005,17: 2857-2860

    6. [6]

      [6] Peled E, Menachem C, Bar-Tow D, et al. J. Electrochem. Soc., 1996,143(1):L4-L7

    7. [7]

      [7] Wu Y P, Jiang C, Wan C, et al. J. Power Sources, 2002,111 (2):329-334

    8. [8]

      [8] Wu Y P, Jiang C, Wan C, et al. Electrochem. Commun., 2000,2(4):272-275

    9. [9]

      [9] Wu Y P, Holze R. J. Solid State Electrochem., 2003,8(1):73-78

    10. [10]

      [10] Shim J, Striebel K A. J. Power Sources, 2007,164(2):862-867

    11. [11]

      [11] Bhattacharya A, Hazra A, Chatterjee S, et al. J. Power Sources, 2004,136(2):208-210

    12. [12]

      [12] Yang S, Song H, Chen X. Electrochem. Commun., 2006,8 (1):137-142

    13. [13]

      [13] Zou L, Kang F, Zheng Y P, et al. Electrochim. Acta, 2009, 54(15):3930-3934

    14. [14]

      [14] Lin Y, Huang Z H, Yu X, et al. Electrochim. Acta, 2014, 116:170-174

    15. [15]

      [15] Yoshio M, Wang H, Fukuda K, et al. J. Electrochem. Soc., 2000,147(4):1245-1250

    16. [16]

      [16] Wang H, Yoshio M. J. Power Sources, 2001,93(1):123-129

    17. [17]

      [17] Wang H, Yoshio M, Abe T, et al. J. Electrochem. Soc., 2002,149(4):A499-A503

    18. [18]

      [18] Ohzawa Y, Yamanaka Y, Naga K, et al. J. Power Sources, 2005,146(1):125-128

    19. [19]

      [19] Zhang H L, Liu S H, Li F, et al. Carbon, 2006,44(11):2212 -2218

    20. [20]

      [20] Natarajan C, Fujimoto H, Tokumitsu K, et al. Carbon, 2001,39(9):1409-1413

    21. [21]

      [21] Lee H Y, Baek J K, Jang S W, et al. J. Power Sources, 2001,101(2):206-212

    22. [22]

      [22] Tsumura T, Katanosaka A, Souma I, et al. Solid State Ionics, 2000,135(1):209-212

    23. [23]

      [23] Nozaki H, Nagaoka K, Hoshi K, et al. J. Power Sources, 2009,194(1):486-493

    24. [24]

      [24] Yoon S, Kim H, Oh S M. J. Power Sources, 2001,94(1):68-73

    25. [25]

      [25] Lee J, Park M S, Park Y S, et al. ChemElectroChem, 2014,1 (10):1672-1678

    26. [26]

      [26] Lian P, Zhu X, Liang S, et al. Electrochim. Acta, 2010,55 (12):3909-3914

    27. [27]

      [27] Kudin K N, Ozbas B, Schniepp H C. et al. Nano Lett., 2008,8(1):36-41

    28. [28]

      [28] Ferrari A C, Robertson J. Phys. Rev. B, 2000,61(20):14095 -14107

    29. [29]

      [29] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Phys. Chem. Chem. Phys., 2007,9(11):1276-1290

    30. [30]

      [30] Zou L, Kang F Y, Li X L, et al. J. Phys. Chem. Solids, 2008,69(5):1265-1271

    31. [31]

      [31] Yao J, Wang G X, Ahn J, et al. J. Power Sources, 2003,114 (2):292-297

    32. [32]

      [32] Mabuchi A, Fujimoto H, Tokumitsu K, et al. J. Electrochem. Soc., 1995,142(9):3049-3051

    33. [33]

      [33] Zhou H, Zhu S, Hibino M, et al. Adv. Mater., 2003,15(24): 2107-2111

    34. [34]

      [34] Dahn J R. Phys. Rev. B, 1991,44(17):9170

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    19. [19]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(0)
  • Abstract views(288)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return