Citation:
LU Yong-Juan, JIA Jun-Hong. Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays[J]. Chinese Journal of Inorganic Chemistry,
;2015, (6): 1091-1098.
doi:
10.11862/CJIC.2015.155
-
Hydrothermally synthesized TiO2 nanorod arrays on FTO glass substrates were functionalized with uniform Bi2S3 quantum dots by CBD method combined with self-assembled monolayers(SAMs). The surface morphology, structure, optical and photoelectrochemical behaviors of the TiO2/Bi2S3 nanorod arrays are considered. The results that uniform Bi2S3 thin films were deposited on the surface of TiO2 nanorods modified by APTS SAMs. The key of the technology is that the APTS SAM possessing -NH2 functional groups can be employed to control nucleation. Moreover, the deposition time of Bi2S3 thin film plays a key role in the visible light absorption as well as photoelectric response of TiO2/Bi2S3 nanorod arrays. It reveals that, with the increase of the deposition time, the Jsc of composite thin film first increased and then decreased, and a Jsc maximum value of 0.13 mA·cm-2 reached at 20 min deposition of Bi2S3. The increase of Jsc for the initial deposition time could be interpreted as the result of enhanced absorption in the visible light range. Further increase the deposition time resulted in an obvious decrease in Jsc. This phenomenon might be attributed to Bi2S3 overloading on the surface of TiO2 resulted in aggregations and conglomerations, leading to more surface defects and recombination of photoexcited carrier.
-
-
-
[1]
[1] Falaras P, Gratzel M, Nazeemddin M, et al. J. Electrochem. Soc., 1993,140:92-94
-
[2]
[2] Barbe C J, Arendse F, Comte P. J. Am. Ceram. Soc., 1997, 80:3157-3171
-
[3]
[3] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218
-
[4]
[4] Kai Z, Nathan R N, Miedaner A, et al. Nano Lett., 2007,7: 69-74
-
[5]
[5] Zhao J, Wang X, Chen R. Mater. Lett., 2005,59:2329-2332
-
[6]
[6] Adachi M, Murata Y, Okada I, et al. J. Electrochem. Soc., 2003,150:G488-G493
-
[7]
[7] Paulose M, Shankar K, Varghese O K, et al. Nanotechnology, 2006,17:1446-1448
-
[8]
[8] Paulose M, Varghese O K, Mor G K, et al. Nanotechnology, 2006,17:398-402
-
[9]
[9] Adachi M, Murata Y, Harada M, et al. Chem. Lett., 2000,29: 942-943
-
[10]
[10] Chu S Z, Inoue S, Wada K, et al. J. Phys. Chem. B, 2003, 107:6586-6589
-
[11]
[11] Zhang Z, Shimizu T, Senz S. Adv. Mater., 2009,21:2824-2828
-
[12]
[12] Michailowski A, Almlwai D, Cheng G S, et al. Chem. Phys. Lett., 2001,349:1-5
-
[13]
[13] Wu J J, Yu C C. J. Phys. Chem. B, 2004,108:3377-3379
-
[14]
[14] Feng X J, Shankar K, Varghese O K, et al. Nano Lett., 2008,8:3781-3786
-
[15]
[15] Liu B, Aydil E S. J. Am. Chem. Soc., 2009,131:3985-3990
-
[16]
[16] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393
-
[17]
[17] LIU Fei-La(刘非拉), XIAO Peng(肖鹏), ZHOU Ming(周明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5): 861-872
-
[18]
[18] Nozik A J, Beard M C, Luther J M, et al. Chem. Rev., 2010, 110:6873-6890
-
[19]
[19] Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994,98:3183-3188
-
[20]
[20] LI Jing(李静). Thesis for the Master of Hubei University(湖 北大学硕士学位论文), 2013.
-
[21]
[21] Peter L M, Waggett J P, et al. J. Phys. Chem. B, 2003,107: 8378-8381
-
[22]
[22] Roemermahler J, Bremer F J. Adv. Mater., 1995,7:7-9
-
[23]
[23] Aizenberg J, Black A J, Whitesides G H. J. Am. Chem. Soc., 1999,121:4500-4509
-
[24]
[24] Liufu S, Chen L D. J. Phys. Chem. C, 2008,112:12085-12088
-
[25]
[25] Liufu S, Chen L D, et al. J. Phys. Chem. B, 2006,110:24054 -24061
-
[26]
[26] Lu Y, Jia J, Yi G. CrystEngComm, 2012,14:3433-3440
-
[27]
[27] Cao C, Hu C, Wang X. Sensor Actuat B, 2011,156:114-119
-
[28]
[28] Coughlin K M, Nevins J S, Watson D F. ACS Appl. Mater. Interfaces, 2013,5:8649-8654
-
[29]
[29] ZHU Gang-Qiang(朱刚强), HUANG Xi-Jin(黄锡金), FEN Bo(冯波), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2041-2046
-
[30]
[30] Wang H, McNellis E R, Kinge S, et al. Nano Lett., 2013,13: 5311-5315
-
[31]
[31] Ardalan P, Brennan T P, Bakke J R, et al. ACS Nano, 2011,5: 1495-1504
-
[32]
[32] Cai F G, Yang F, Jia Y F, et al. J. Mater. Sci., 2013,48: 6001-6007
-
[33]
[33] Nasr C, Hotchandani S, Kim W Y, et al. J. Phys. Chem. B, 1997,101:7480-7487
-
[34]
[34] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002,4: 198-203
-
[35]
[35] Yang L, Luo S, Liu R, et al. J. Phys. Chem. C, 2010,114: 4783-4789
-
[1]
-
-
-
[1]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[2]
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
-
[3]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[4]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[5]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[6]
Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155
-
[7]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[8]
Congqi Zhu , Bo Liu , Ruchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146
-
[9]
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
-
[10]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[11]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[14]
Fan Yang , Zheng Liu , Da Wang , KwunNam Hui , Yelong Zhang , Zhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006
-
[15]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[16]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[17]
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
-
[18]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[19]
Xinlin Zhang , Cheng Tang , Haitao Li , Jie Sun , Aijun Du , Minghong Wu , Haijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(590)
- HTML views(82)
Login In
DownLoad: