Citation: LU Yong-Juan, JIA Jun-Hong. Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1091-1098. doi: 10.11862/CJIC.2015.155 shu

Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays

  • Corresponding author: LU Yong-Juan, 
  • Received Date: 14 October 2014
    Available Online: 11 March 2015

    Fund Project: 中央高校基本业务费专项资金项目(No.31920140083) (No.31920140083)引进人才教学科研启动费(No.xbmuyjrc1201204)资助项目。 (No.xbmuyjrc1201204)

  • Hydrothermally synthesized TiO2 nanorod arrays on FTO glass substrates were functionalized with uniform Bi2S3 quantum dots by CBD method combined with self-assembled monolayers(SAMs). The surface morphology, structure, optical and photoelectrochemical behaviors of the TiO2/Bi2S3 nanorod arrays are considered. The results that uniform Bi2S3 thin films were deposited on the surface of TiO2 nanorods modified by APTS SAMs. The key of the technology is that the APTS SAM possessing -NH2 functional groups can be employed to control nucleation. Moreover, the deposition time of Bi2S3 thin film plays a key role in the visible light absorption as well as photoelectric response of TiO2/Bi2S3 nanorod arrays. It reveals that, with the increase of the deposition time, the Jsc of composite thin film first increased and then decreased, and a Jsc maximum value of 0.13 mA·cm-2 reached at 20 min deposition of Bi2S3. The increase of Jsc for the initial deposition time could be interpreted as the result of enhanced absorption in the visible light range. Further increase the deposition time resulted in an obvious decrease in Jsc. This phenomenon might be attributed to Bi2S3 overloading on the surface of TiO2 resulted in aggregations and conglomerations, leading to more surface defects and recombination of photoexcited carrier.
  • 加载中
    1. [1]

      [1] Falaras P, Gratzel M, Nazeemddin M, et al. J. Electrochem. Soc., 1993,140:92-94

    2. [2]

      [2] Barbe C J, Arendse F, Comte P. J. Am. Ceram. Soc., 1997, 80:3157-3171

    3. [3]

      [3] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218

    4. [4]

      [4] Kai Z, Nathan R N, Miedaner A, et al. Nano Lett., 2007,7: 69-74

    5. [5]

      [5] Zhao J, Wang X, Chen R. Mater. Lett., 2005,59:2329-2332

    6. [6]

      [6] Adachi M, Murata Y, Okada I, et al. J. Electrochem. Soc., 2003,150:G488-G493

    7. [7]

      [7] Paulose M, Shankar K, Varghese O K, et al. Nanotechnology, 2006,17:1446-1448

    8. [8]

      [8] Paulose M, Varghese O K, Mor G K, et al. Nanotechnology, 2006,17:398-402

    9. [9]

      [9] Adachi M, Murata Y, Harada M, et al. Chem. Lett., 2000,29: 942-943

    10. [10]

      [10] Chu S Z, Inoue S, Wada K, et al. J. Phys. Chem. B, 2003, 107:6586-6589

    11. [11]

      [11] Zhang Z, Shimizu T, Senz S. Adv. Mater., 2009,21:2824-2828

    12. [12]

      [12] Michailowski A, Almlwai D, Cheng G S, et al. Chem. Phys. Lett., 2001,349:1-5

    13. [13]

      [13] Wu J J, Yu C C. J. Phys. Chem. B, 2004,108:3377-3379

    14. [14]

      [14] Feng X J, Shankar K, Varghese O K, et al. Nano Lett., 2008,8:3781-3786

    15. [15]

      [15] Liu B, Aydil E S. J. Am. Chem. Soc., 2009,131:3985-3990

    16. [16]

      [16] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393

    17. [17]

      [17] LIU Fei-La(刘非拉), XIAO Peng(肖鹏), ZHOU Ming(周明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5): 861-872

    18. [18]

      [18] Nozik A J, Beard M C, Luther J M, et al. Chem. Rev., 2010, 110:6873-6890

    19. [19]

      [19] Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994,98:3183-3188

    20. [20]

      [20] LI Jing(李静). Thesis for the Master of Hubei University(湖 北大学硕士学位论文), 2013.

    21. [21]

      [21] Peter L M, Waggett J P, et al. J. Phys. Chem. B, 2003,107: 8378-8381

    22. [22]

      [22] Roemermahler J, Bremer F J. Adv. Mater., 1995,7:7-9

    23. [23]

      [23] Aizenberg J, Black A J, Whitesides G H. J. Am. Chem. Soc., 1999,121:4500-4509

    24. [24]

      [24] Liufu S, Chen L D. J. Phys. Chem. C, 2008,112:12085-12088

    25. [25]

      [25] Liufu S, Chen L D, et al. J. Phys. Chem. B, 2006,110:24054 -24061

    26. [26]

      [26] Lu Y, Jia J, Yi G. CrystEngComm, 2012,14:3433-3440

    27. [27]

      [27] Cao C, Hu C, Wang X. Sensor Actuat B, 2011,156:114-119

    28. [28]

      [28] Coughlin K M, Nevins J S, Watson D F. ACS Appl. Mater. Interfaces, 2013,5:8649-8654

    29. [29]

      [29] ZHU Gang-Qiang(朱刚强), HUANG Xi-Jin(黄锡金), FEN Bo(冯波), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2041-2046

    30. [30]

      [30] Wang H, McNellis E R, Kinge S, et al. Nano Lett., 2013,13: 5311-5315

    31. [31]

      [31] Ardalan P, Brennan T P, Bakke J R, et al. ACS Nano, 2011,5: 1495-1504

    32. [32]

      [32] Cai F G, Yang F, Jia Y F, et al. J. Mater. Sci., 2013,48: 6001-6007

    33. [33]

      [33] Nasr C, Hotchandani S, Kim W Y, et al. J. Phys. Chem. B, 1997,101:7480-7487

    34. [34]

      [34] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002,4: 198-203

    35. [35]

      [35] Yang L, Luo S, Liu R, et al. J. Phys. Chem. C, 2010,114: 4783-4789

  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    2. [2]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    3. [3]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    6. [6]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Congqi ZhuBo LiuRuchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146

    9. [9]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    14. [14]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    18. [18]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    19. [19]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(590)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return