Citation: WU Yan-Li, XU Xian-Zhu, WEN Jia, XIAO Qiang, LI Yong-Xiu. Synthesis and Properties of Paramagnetic-Fluorescent Gd2(CO3)3:Eu@SiO2@APTES Core-Shell Structured Microspheres[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1125-1130. doi: 10.11862/CJIC.2015.154 shu

Synthesis and Properties of Paramagnetic-Fluorescent Gd2(CO3)3:Eu@SiO2@APTES Core-Shell Structured Microspheres

  • Corresponding author: LI Yong-Xiu, 
  • Received Date: 3 December 2014
    Available Online: 9 February 2015

    Fund Project: 江西省教育厅一般项目(No.GJJ14578,GJJ13216) (No.GJJ14578,GJJ13216)江西省科技支撑项目(No.20142BBF60008)资助。 (No.20142BBF60008)

  • Monodisperse core-shell structured Gd2(CO3)3:Eu@SiO2@APTES microsphere was successfully prepared via the stöber method by coating a layer of silica on the surface of Gd2(CO3)3:Eu microspheres which derived from a simple urea assisted coprecipitation method. Their structural, optical and magnetic properties were investigated using SEM, TEM, XRD, FTIR, PL, and MPMS. The results indicated that the microspheres with general 30 nm shell thickness and 150 nm core size has spherical morphology with smooth surface and narrow size distribution. The paramagnetic property of the synthesized Gd2(CO3)3:Eu@SiO2@APTES microspheres were confirmed with its linear hysteresis plot (M-H). The synthesized microspheres can enter into living cancer cells and emit orange-red luminescence light due to the 5D07F2 transition of the Eu3+ ions, and Gd2(CO3)3:Eu@SiO2@APTES microspheres showed no cell cytotoxicity or adverse affect on kidney cell growth under high dose up to 400 μg·mL-1. Therefore, Gd2(CO3)3:Eu@SiO2@APTES microspheres provides the dual modality of optical and magnetic resonance imaging.
  • 加载中
    1. [1]

      [1] Lee D E, Koo H, Sun I C, et al. Chem. Soc. Rev., 2012,41: 2656-2672

    2. [2]

      [2] Key J, Leary J F. Int. J. Nanomed., 2014,9:711-726

    3. [3]

      [3] Zhu H, Shang Y, Wang W. Small, 2013,9(17):2991-3000

    4. [4]

      [4] Kim J, Piao Y, Hyeon T. Chem. Soc. Rev., 2009,38:372-390

    5. [5]

      [5] Yu M, Shi M, Chen Z, et al. Chem.-Eur. J., 2008,14(23): 6892-6900

    6. [6]

      [6] YIN Dong-Guang(尹东光), LIU Bin-Hu(刘斌虎), ZHANG Li (张礼). Chinese J. Inorg. Chem.(无机化学学报), 2010,26 (9):1612-1616

    7. [7]

      [7] Sheng Z H, Han H Y, Hu X F, et al. Dalton Trans., 2010,39 (30):7017-7020

    8. [8]

      [8] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004,4 (1):11-18

    9. [9]

      [9] Liu Q, Feng W, Li F Y. Coord. Chem. Rev., 2014,273/274: 100-110

    10. [10]

      [10] Luo N Q, Yang C, Tian X M, et al. J. Mater. Chem. B, 2014, 2:5891-5897

    11. [11]

      [11] Shen J, Sun L D, Yan C H. Dalton Trans., 2008(42):5687-5697

    12. [12]

      [12] CHEN Liang-Dong(陈良冬), ZHENG Xiao-Rui(郑小睿), DING Yun(丁耘), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2009,25(2):285-289

    13. [13]

      [13] Sun Z W, Liu D M, Tong L Z. Solid State Sci., 2011,13(2): 361-365

    14. [14]

      [14] Zhang Y X, Pan S S, Teng X M. J. Phys. Chem. C, 2008, 112(26):9623-9626

    15. [15]

      [15] Majeed S, Shivashankar S A. J. Mater. Chem. B, 2014,2: 5585-5593

    16. [16]

      [16] Cao T Y, Yang T S, Gao Y, et al. Inorg. Chem. Commun., 2010,13:392-394

    17. [17]

      [17] Hu Y L, Sun Y X, Li Y, et al. RSC Adv., 2014,4:43653-43660

    18. [18]

      [18] Debasu M L, Ananias D, Pinho S L, et al. Nanoscale, 2012, 4:5154-5162

    19. [19]

      [19] Ren W L, Tian G, Zhou L J, et al. Nanoscale, 2012,4:3754-3760

    20. [20]

      [20] Liviano S R, Becerro A I, Alcántara D, et al. Inorg. Chem., 2013,52:647-654

    21. [21]

      [21] Yin W Y, Zhou L J, Gu Z J. J. Mater. Chem., 2012,22:6974 -6981

    22. [22]

      [22] Jia G, Zhang C M, Ding S W. CrystEngComm, 2012,14:573-578

    23. [23]

      [23] Harrison T S, Scott L J. Drugs, 2004,64(9):985-996

    24. [24]

      [24] Wu Y L, Xu X Z, Tang Q, et al. Nanotechnology, 2012,23 (20):205103-205108

    25. [25]

      [25] PENG Hong-Xia(彭红霞), LIU Gui-Xia(刘桂霞), DONG Xiang-Ting(董相廷), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2012,18(7):1305-1309

    26. [26]

      [26] ZHONG Wen-Ying(钟文英), YANG Shuo(杨硕), HUANG Bin(黄斌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(11):2021-2028

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    10. [10]

      Wenwei Zeng Qingyu Sun Mengxiang Liang Lirong Lin Laiying Zhang . Unveiling Anti-Counterfeiting Secrets: Excitation-Dependent Luminescence in Sb3+-Doped Perovskite Materials. University Chemistry, 2026, 41(2): 375-384. doi: 10.12461/PKU.DXHX202503036

    11. [11]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    18. [18]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    19. [19]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    20. [20]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

Metrics
  • PDF Downloads(0)
  • Abstract views(1237)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return