Citation: XIAO Hui, SUN Li-Ping, ZHAO Hui, HUO Li-Hua, Jean-Marc Bassat, Aline Rougier, Sébastien Fourcade, Jean-Claude Grenier. Preparation and Electrochemical Properties of LaBiMn2O6 Cathode for IT-SOFCs[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1139-1144. doi: 10.11862/CJIC.2015.153 shu

Preparation and Electrochemical Properties of LaBiMn2O6 Cathode for IT-SOFCs

  • Received Date: 13 December 2014
    Available Online: 23 March 2015

    Fund Project: 国家自然科学基金(No.51302069,51372073) (No.51302069,51372073)高等学校博士学科点专项科研基金(No.20132301110002) (No.20132301110002)

  • LaBiMn2O6(LBM) cathode for IT-SOFCs (intermediate temperature solid oxide fuel cells) has been prepared by solid state reaction and studied by XRDand EISspectrum,respectively. The results show that LBM has no reaction with Ce0.7Bi0.3O1.85(CBO) electrolyte at 1000 ℃ for 12 h. AC impedance spectroscopy and DC polarization measurements are used to study the electrode performances. The polarization resistance decreases with temperature and reaches 0.71 Ω·cm2 at 700 ℃ in air. Oxygen partial pressure study indicated that charge transfer process is the major rate limiting step for LaBiMn2O6 cathode from 600 to 700 ℃. The LaBiMn2O6 cathode exhibits the lowest overpotential of 85 mVunder current density of 216 mA·cm-2 at 700 ℃ in air. This preliminary work showes that LaBiMn2O6 material may be potential cathodes for IT-SOFCs.
  • 加载中
    1. [1]

      [1] Adler S B. Chem. Rev., 2004,104:4791-4843

    2. [2]

      [2] Kim G, Wang S, Jacobson A J, et al. J. Mater. Chem., 2007, 17:2500-2505

    3. [3]

      [3] Tarancón A, Skinner S J, Chater R J, et al. J. Mater. Chem., 2007,17:3175-3181

    4. [4]

      [4] Yoo S, Shin J Y, Kim G. J. Mater. Chem., 2011,21:439-443

    5. [5]

      [5] Burriel M, Peña-Martínez J, Chater R J, et al. J. Mater. Chem., 2012,24:613-621

    6. [6]

      [6] Zhang K, Ge L, Ran R, et al. Acta Mater., 2008,56:4876 -4889

    7. [7]

      [7] Jin M F, Zhang X L, Qiu Y E, et al. J. Alloys Compd., 2010,494:359-361

    8. [8]

      [8] Kim J H, Manthiram A. J. Electrochem. Soc., 2008,155:385 -390

    9. [9]

      [9] Zhou Q J, Wang F, Shen Y, et al. J. Power Sources, 2010, 195:2174-2181

    10. [10]

      [10] Chen D J, Ran R, Zhang K, et al. J. Power Sources, 2009, 188:96-105

    11. [11]

      [11] Albert Tarancón, Mónica Burriel, José Santiso, et al. J. Mater. Chem., 2010,20:3799-3813

    12. [12]

      [12] Taskin A A, Lavrov A N, Yoichi Ando. Appl. Phys. Lett., 2005,86(9):091910-3

    13. [13]

      [13] Liu Y. J. Alloys Compd., 2009,477:860-862

    14. [14]

      [14] Zhang X T, Hao H S, He Q L. Physica B, 2007,394:118 -121

    15. [15]

      [15] Xue J F, Shen Y, He T M. J. Power Sources, 2011,196: 3729-3735

    16. [16]

      [16] Martin C, Maignan A, Pelloquin D. Appl. Phys. Lett., 1997, 71:1421-1423

    17. [17]

      [17] Maignan A, Martin C, Pelloquin D, et al. J. Solid State Chem.,1999,142(2):247-260

    18. [18]

      [18] Chen D, Wang F C, Shi H G. Electrochim. Acta, 2012,78: 466-474

    19. [19]

      [19] Lu K, Shen F Y, Rose Roberts, et al. J. Power Sources, 2014,268:379-387

    20. [20]

      [20] Sun L P, Huo L H, Zhao H. J. Power Sources, 2008,179:96 -100

    21. [21]

      [21] Li Q, Sun L P, Zeng X. J. Power Sources, 2013,238:11-16

    22. [22]

      [22] Wang Y X, Zhao X Y, Lü S Q. Ceram. Int., 2014,40:11343 -11350

    23. [23]

      [23] Zhao H, Feng S H, Xu W. Mater. Res. Bull., 2000,35(15): 2379-2386

    24. [24]

      [24] Asish K K, Pralong V, Caignaert V, et al. J. Mater. Chem., 2007,17:3347-3353

    25. [25]

      [25] Daroukha M A, Vashooka V V, Ullmanna H, et al. Solid State Ionics, 2003,158:141-150

    26. [26]

      [26] Nagde K R, Bhoga S S. Ionics, 2009,15:571-578

    27. [27]

      [27] Jiang S P. J. Power Sources, 2003,124:390-402

    28. [28]

      [28] Gao Z, Liu X M, Bergman B, et al. J. Power Sources, 2011,196:9195-9203

    29. [29]

      [29] Kim J D, Kim G D, Moon J W, et al. Solid State Ionics, 2001,143:379-389

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    4. [4]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(0)
  • Abstract views(362)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return