Citation: XIAO Hui, SUN Li-Ping, ZHAO Hui, HUO Li-Hua, Jean-Marc Bassat, Aline Rougier, Sébastien Fourcade, Jean-Claude Grenier. Preparation and Electrochemical Properties of LaBiMn2O6 Cathode for IT-SOFCs[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1139-1144. doi: 10.11862/CJIC.2015.153 shu

Preparation and Electrochemical Properties of LaBiMn2O6 Cathode for IT-SOFCs

  • Received Date: 13 December 2014
    Available Online: 23 March 2015

    Fund Project: 国家自然科学基金(No.51302069,51372073) (No.51302069,51372073)高等学校博士学科点专项科研基金(No.20132301110002) (No.20132301110002)

  • LaBiMn2O6(LBM) cathode for IT-SOFCs (intermediate temperature solid oxide fuel cells) has been prepared by solid state reaction and studied by XRDand EISspectrum,respectively. The results show that LBM has no reaction with Ce0.7Bi0.3O1.85(CBO) electrolyte at 1000 ℃ for 12 h. AC impedance spectroscopy and DC polarization measurements are used to study the electrode performances. The polarization resistance decreases with temperature and reaches 0.71 Ω·cm2 at 700 ℃ in air. Oxygen partial pressure study indicated that charge transfer process is the major rate limiting step for LaBiMn2O6 cathode from 600 to 700 ℃. The LaBiMn2O6 cathode exhibits the lowest overpotential of 85 mVunder current density of 216 mA·cm-2 at 700 ℃ in air. This preliminary work showes that LaBiMn2O6 material may be potential cathodes for IT-SOFCs.
  • 加载中
    1. [1]

      [1] Adler S B. Chem. Rev., 2004,104:4791-4843

    2. [2]

      [2] Kim G, Wang S, Jacobson A J, et al. J. Mater. Chem., 2007, 17:2500-2505

    3. [3]

      [3] Tarancón A, Skinner S J, Chater R J, et al. J. Mater. Chem., 2007,17:3175-3181

    4. [4]

      [4] Yoo S, Shin J Y, Kim G. J. Mater. Chem., 2011,21:439-443

    5. [5]

      [5] Burriel M, Peña-Martínez J, Chater R J, et al. J. Mater. Chem., 2012,24:613-621

    6. [6]

      [6] Zhang K, Ge L, Ran R, et al. Acta Mater., 2008,56:4876 -4889

    7. [7]

      [7] Jin M F, Zhang X L, Qiu Y E, et al. J. Alloys Compd., 2010,494:359-361

    8. [8]

      [8] Kim J H, Manthiram A. J. Electrochem. Soc., 2008,155:385 -390

    9. [9]

      [9] Zhou Q J, Wang F, Shen Y, et al. J. Power Sources, 2010, 195:2174-2181

    10. [10]

      [10] Chen D J, Ran R, Zhang K, et al. J. Power Sources, 2009, 188:96-105

    11. [11]

      [11] Albert Tarancón, Mónica Burriel, José Santiso, et al. J. Mater. Chem., 2010,20:3799-3813

    12. [12]

      [12] Taskin A A, Lavrov A N, Yoichi Ando. Appl. Phys. Lett., 2005,86(9):091910-3

    13. [13]

      [13] Liu Y. J. Alloys Compd., 2009,477:860-862

    14. [14]

      [14] Zhang X T, Hao H S, He Q L. Physica B, 2007,394:118 -121

    15. [15]

      [15] Xue J F, Shen Y, He T M. J. Power Sources, 2011,196: 3729-3735

    16. [16]

      [16] Martin C, Maignan A, Pelloquin D. Appl. Phys. Lett., 1997, 71:1421-1423

    17. [17]

      [17] Maignan A, Martin C, Pelloquin D, et al. J. Solid State Chem.,1999,142(2):247-260

    18. [18]

      [18] Chen D, Wang F C, Shi H G. Electrochim. Acta, 2012,78: 466-474

    19. [19]

      [19] Lu K, Shen F Y, Rose Roberts, et al. J. Power Sources, 2014,268:379-387

    20. [20]

      [20] Sun L P, Huo L H, Zhao H. J. Power Sources, 2008,179:96 -100

    21. [21]

      [21] Li Q, Sun L P, Zeng X. J. Power Sources, 2013,238:11-16

    22. [22]

      [22] Wang Y X, Zhao X Y, Lü S Q. Ceram. Int., 2014,40:11343 -11350

    23. [23]

      [23] Zhao H, Feng S H, Xu W. Mater. Res. Bull., 2000,35(15): 2379-2386

    24. [24]

      [24] Asish K K, Pralong V, Caignaert V, et al. J. Mater. Chem., 2007,17:3347-3353

    25. [25]

      [25] Daroukha M A, Vashooka V V, Ullmanna H, et al. Solid State Ionics, 2003,158:141-150

    26. [26]

      [26] Nagde K R, Bhoga S S. Ionics, 2009,15:571-578

    27. [27]

      [27] Jiang S P. J. Power Sources, 2003,124:390-402

    28. [28]

      [28] Gao Z, Liu X M, Bergman B, et al. J. Power Sources, 2011,196:9195-9203

    29. [29]

      [29] Kim J D, Kim G D, Moon J W, et al. Solid State Ionics, 2001,143:379-389

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    7. [7]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(0)
  • Abstract views(413)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return