Citation: ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, ZHU Mian-Xia, LUO Zhi-Yun. Formation Mechanisms of Monodisperse Strontium Titanate Nanocrystalline[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 888-894. doi: 10.11862/CJIC.2015.137 shu

Formation Mechanisms of Monodisperse Strontium Titanate Nanocrystalline

  • Corresponding author: ZHAN Hong-Quan, 
  • Received Date: 23 August 2014
    Available Online: 16 December 2014

    Fund Project: 国家自然科学基金(No.51262009) (No.51262009)江西省自然科学基金(No.20122BAB203019,20132BAB206017,20122BAB202001) (No.20122BAB203019,20132BAB206017,20122BAB202001)江西省教育厅科技项目(No.GJJ13628) (No.GJJ13628)江西省高校大学生创新创业计划项目(No.201310408019) (No.201310408019)

  • In the mixed-solution of ethanol and water, the monodisperse strontium titanate (STO) nanocrys-tallines were synthesized by hydrothermal method. The powder X-ray diffraction (XRD) patterns results revealed that the nanocrystallines crystallized in the cubic phase, and the crystallization of the products became more significant with the reaction continuing. The particle size of about 70 nm and cubic morphology were further evidenced by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth process of the nanocrystallines was studied by SEM, TEM, high resolution transmission electron microscopy (HRTEM) and electron diffraction(ED) spectroscopy in detail. The results have discovered that as follow: first, the nucleus of STO was produced by the diffusion reaction between the precursors; then, the nuclei orientedly attached by each other and the nanoparticle-aggregation came into being; last, the nanoparticle-aggregations were converted into the single crystallines of STO under Ostwald ripening mechanisms. The growth process of “diffusion reaction—oriented attachment—Ostwald ripening” has discovered the formation mechanism of STO nanocrystalline. The results of kinetics modeling with Johnson-Mehl-Avrami(JMA) equation show that the diffusion reaction is dominant at the early stage and the active energy is 15.79 kJ·mol-1.
  • 加载中
    1. [1]

      [1] Ouyang S X, Tong H, Umezawa N, et al. J. Am. Chem. Soc., 2012,134(4):1974-1977

    2. [2]

      [2] Sun J Y, Gao T, Song X J, et al. J. Am. Chem. Soc., 2014, 136(18):6574-6577

    3. [3]

      [3] Shen S, Jia Y S, Fan F T, et al. Chin. J. Catal., 2013,34(11): 2036-2040

    4. [4]

      [4] LIU Jian(刘剑), TAN Guo-Qiang(谈国强), MIAO Hong-Yan (苗红雁), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(3):517-521

    5. [5]

      [5] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(12):2597-2604

    6. [6]

      [6] Iwashina K, Kudo A. J. Am. Chem. Soc., 2011,133(34):13272-13275

    7. [7]

      [7] Zou F, Jiang Z, Qin X Q, et al. Chem. Commun., 2012,48(68): 8514-8516

    8. [8]

      [8] Wang Q, Hisatomi T, Ma S S K, et al. Chem. Mater., 2014, 26(14):4144-4150

    9. [9]

      [9] Kuang Q, Yang S H. ACS Appl. Mater. Interfaces, 2013,5 (9):3683-3690

    10. [10]

      [10] Feng L L, Zou X X, Zhao J, et al. Chem. Commun., 2013,49 (84):9788-9790

    11. [11]

      [11] CHEN Wan-Ping(陈万平), ZHU Qi-An(朱启安), SONG Fang-Ping(宋方平), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2006,22(11):2105-2108

    12. [12]

      [12] CUI Bin(崔斌), WANG Xun(王训), LI Ya-Dong(李亚栋). Chem. J. Chinese Universities(高等学校化学学报), 2007, 28(1):1-5

    13. [13]

      [13] Xu G, Huang X J, Zhang Y F, et al. CrystEngComm, 2013, 15(36):7206-7211

    14. [14]

      [14] Moreira M L, Longo V M, Avansi W, et al. J. Phys. Chem. C, 2012,116(46):24792-24808

    15. [15]

      [15] Calderone V R, Testino A, Buscaglia M T, et al. Chem. Mater., 2006,18(6):1627-1633

    16. [16]

      [16] Modeshia D R, Walton R I. Chem. Soc. Rev., 2010,39(11): 4303-4325

    17. [17]

      [17] SHI Er-Wei(施尔畏), CHEN Zhi-Zhan(陈之战), YUAN Ru-Lin(元如林), et al. Hydrothermal Crystallography(水热结晶 学). Beijing: Science Press, 2004.

    18. [18]

      [18] Zhan H Q, Yang X F, Wang C M, et al. Cryst. Growth Des., 2012,12(3):1247-1253

    19. [19]

      [19] ZHAN Hong-Quan(展红全), JIANG Xiang-Ping(江向平), LI Xiao-Hong(李小红), et al. Acta Phys.-Chim. Sin.(物理化学 学报), 2011,27(12):2927-2932

    20. [20]

      [20] Zhang S C, Liu J X, Han Y X, et al. Mater. Sci. Eng. B, 2004,110(1):11-17

    21. [21]

      [21] Colfen H, Antonietti M. Angew. Chem. Int. Ed., 2005,44 (35):5576-5591

    22. [22]

      [22] FENG Yi(冯怡), MA Tian-Yi(马天翼), LIU Lei(刘蕾), et al. Sci. China Ser. B: Chem.(中国科学B), 2009,39(9):864-886

    23. [23]

      [23] Liu Z, Wen X D, Wu X L, et al. J. Am. Chem. Soc., 2009, 131(26):9405-9412

    24. [24]

      [24] Yasui K, Kato K. J. Phys. Chem. C, 2012,116(1):319-324

    25. [25]

      [25] Souza A E, Santos G T A, Barra B C, et al. Cryst. Growth Des., 2012,12(11):5671-5679

    26. [26]

      [26] Nassif N, Pinna N, Gehrke N, et al. Proc. Natl. Acad. Sci. USA, 2005,102(36):12653-12655

    27. [27]

      [27] Wei X, Xu G, Ren Z H, et al. J. Am. Ceram. Soc., 2010,93 (5):1297-1305

    28. [28]

      [28] Croker D, Loan M, Hodnett B K. Cryst. Growth Des., 2009,9 (5):2207-2213

    29. [29]

      [29] LUO Shi-Yong(罗世永), ZHANG Jia-Yun(张家芸), ZHOU Tu-Ping(周土平). J. Chin. Ceram. Soc.(硅酸盐学报), 2000, 28(5):458-461

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    4. [4]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    5. [5]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    14. [14]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(0)
  • Abstract views(274)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return