Citation:
ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, ZHU Mian-Xia, LUO Zhi-Yun. Formation Mechanisms of Monodisperse Strontium Titanate Nanocrystalline[J]. Chinese Journal of Inorganic Chemistry,
;2015, (5): 888-894.
doi:
10.11862/CJIC.2015.137
-
In the mixed-solution of ethanol and water, the monodisperse strontium titanate (STO) nanocrys-tallines were synthesized by hydrothermal method. The powder X-ray diffraction (XRD) patterns results revealed that the nanocrystallines crystallized in the cubic phase, and the crystallization of the products became more significant with the reaction continuing. The particle size of about 70 nm and cubic morphology were further evidenced by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth process of the nanocrystallines was studied by SEM, TEM, high resolution transmission electron microscopy (HRTEM) and electron diffraction(ED) spectroscopy in detail. The results have discovered that as follow: first, the nucleus of STO was produced by the diffusion reaction between the precursors; then, the nuclei orientedly attached by each other and the nanoparticle-aggregation came into being; last, the nanoparticle-aggregations were converted into the single crystallines of STO under Ostwald ripening mechanisms. The growth process of “diffusion reaction—oriented attachment—Ostwald ripening” has discovered the formation mechanism of STO nanocrystalline. The results of kinetics modeling with Johnson-Mehl-Avrami(JMA) equation show that the diffusion reaction is dominant at the early stage and the active energy is 15.79 kJ·mol-1.
-
-
-
[1]
[1] Ouyang S X, Tong H, Umezawa N, et al. J. Am. Chem. Soc., 2012,134(4):1974-1977
-
[2]
[2] Sun J Y, Gao T, Song X J, et al. J. Am. Chem. Soc., 2014, 136(18):6574-6577
-
[3]
[3] Shen S, Jia Y S, Fan F T, et al. Chin. J. Catal., 2013,34(11): 2036-2040
-
[4]
[4] LIU Jian(刘剑), TAN Guo-Qiang(谈国强), MIAO Hong-Yan (苗红雁), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(3):517-521
-
[5]
[5] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(12):2597-2604
-
[6]
[6] Iwashina K, Kudo A. J. Am. Chem. Soc., 2011,133(34):13272-13275
-
[7]
[7] Zou F, Jiang Z, Qin X Q, et al. Chem. Commun., 2012,48(68): 8514-8516
-
[8]
[8] Wang Q, Hisatomi T, Ma S S K, et al. Chem. Mater., 2014, 26(14):4144-4150
-
[9]
[9] Kuang Q, Yang S H. ACS Appl. Mater. Interfaces, 2013,5 (9):3683-3690
-
[10]
[10] Feng L L, Zou X X, Zhao J, et al. Chem. Commun., 2013,49 (84):9788-9790
-
[11]
[11] CHEN Wan-Ping(陈万平), ZHU Qi-An(朱启安), SONG Fang-Ping(宋方平), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2006,22(11):2105-2108
-
[12]
[12] CUI Bin(崔斌), WANG Xun(王训), LI Ya-Dong(李亚栋). Chem. J. Chinese Universities(高等学校化学学报), 2007, 28(1):1-5
-
[13]
[13] Xu G, Huang X J, Zhang Y F, et al. CrystEngComm, 2013, 15(36):7206-7211
-
[14]
[14] Moreira M L, Longo V M, Avansi W, et al. J. Phys. Chem. C, 2012,116(46):24792-24808
-
[15]
[15] Calderone V R, Testino A, Buscaglia M T, et al. Chem. Mater., 2006,18(6):1627-1633
-
[16]
[16] Modeshia D R, Walton R I. Chem. Soc. Rev., 2010,39(11): 4303-4325
-
[17]
[17] SHI Er-Wei(施尔畏), CHEN Zhi-Zhan(陈之战), YUAN Ru-Lin(元如林), et al. Hydrothermal Crystallography(水热结晶 学). Beijing: Science Press, 2004.
-
[18]
[18] Zhan H Q, Yang X F, Wang C M, et al. Cryst. Growth Des., 2012,12(3):1247-1253
-
[19]
[19] ZHAN Hong-Quan(展红全), JIANG Xiang-Ping(江向平), LI Xiao-Hong(李小红), et al. Acta Phys.-Chim. Sin.(物理化学 学报), 2011,27(12):2927-2932
-
[20]
[20] Zhang S C, Liu J X, Han Y X, et al. Mater. Sci. Eng. B, 2004,110(1):11-17
-
[21]
[21] Colfen H, Antonietti M. Angew. Chem. Int. Ed., 2005,44 (35):5576-5591
-
[22]
[22] FENG Yi(冯怡), MA Tian-Yi(马天翼), LIU Lei(刘蕾), et al. Sci. China Ser. B: Chem.(中国科学B), 2009,39(9):864-886
-
[23]
[23] Liu Z, Wen X D, Wu X L, et al. J. Am. Chem. Soc., 2009, 131(26):9405-9412
-
[24]
[24] Yasui K, Kato K. J. Phys. Chem. C, 2012,116(1):319-324
-
[25]
[25] Souza A E, Santos G T A, Barra B C, et al. Cryst. Growth Des., 2012,12(11):5671-5679
-
[26]
[26] Nassif N, Pinna N, Gehrke N, et al. Proc. Natl. Acad. Sci. USA, 2005,102(36):12653-12655
-
[27]
[27] Wei X, Xu G, Ren Z H, et al. J. Am. Ceram. Soc., 2010,93 (5):1297-1305
-
[28]
[28] Croker D, Loan M, Hodnett B K. Cryst. Growth Des., 2009,9 (5):2207-2213
-
[29]
[29] LUO Shi-Yong(罗世永), ZHANG Jia-Yun(张家芸), ZHOU Tu-Ping(周土平). J. Chin. Ceram. Soc.(硅酸盐学报), 2000, 28(5):458-461
-
[1]
-
-
-
[1]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[2]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[3]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[4]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[5]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[6]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[7]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[8]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[9]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[10]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[11]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[12]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[13]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[14]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
-
[15]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[16]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[17]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[18]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[19]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[20]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(358)
- HTML views(37)