Citation: QI Xiao-Jiao, WANG Qian, GAO Hai-Yan, LI Guo-Dong. Hollow Spindle-Shaped CuO/Cu2(OH)2CO3 Nanocomposites: Synthesis and Gas Sensing Property[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 1010-1018. doi: 10.11862/CJIC.2015.129 shu

Hollow Spindle-Shaped CuO/Cu2(OH)2CO3 Nanocomposites: Synthesis and Gas Sensing Property

  • Corresponding author:
  • Received Date: 26 November 2014
    Available Online: 10 February 2015

    Fund Project: 国家自然科学基金(No.21271138,21371070,21071060) (No.21271138,21371070,21071060)天津自然科学基金(No.14JCYBJC17500,14JCQNJC02500) (No.14JCYBJC17500,14JCQNJC02500)吉林大学无机合成与制备化学国家重点实验室开放课题(No.2015-02) (No.2015-02)国家大学生创新创业计划项目(201410058003)资助。 (201410058003)

  • Hollow spindle-shaped CuO/Cu2(OH)2CO3 composites were fabricated via a templateless hydrothermal route with Cu2(OH)3NO3 as the precursor. XRD measurements and TEM observations reveal that the as-prepared CuO/Cu2(OH)2CO3 is hollow spindle-shaped with size of 1~2 μm. HRTEM image indicates that the shell of each particle is highly dispersive mixtures of nanoscale CuO and Cu2(OH)2CO3. Time dependent experiments disclose that the formation of hollow spindle-shaped CuO/Cu2(OH)2CO3 composites particles is driven by self-transformation and Ostwald ripening. The gas sensing performances were investigated with ethanol and acetone as the target gases. The as-prepared hollow CuO/Cu2(OH)2CO3 composites exhibit improved gas sensing properties in comparison with the commercial CuO powders, which can be ascribed to the decreased grain-to-grain contacts of the highly dispersive mixtures.
  • 加载中
    1. [1]

      [1] Steinhauer S, Brunet E, Maier T, et al. Sens. Actuators B, 2013,187:50-57

    2. [2]

      [2] Chen J J, Wang K, Hartman L, et al. J. Phys. Chem. C, 2008,122(41):17-21

    3. [3]

      [3] Lee J H. Sens. Actuators B, 2009,140(1):319-336

    4. [4]

      [4] Zhou L J, Zou Y C, Zhao Y J, et al. Sens. Actuators B, 2013,188:533-539

    5. [5]

      [5] Qin Y, Zhang F, Chen Y, et al. J. Phys. Chem. C, 2012,116 (22):1994-2000

    6. [6]

      [6] Steinhauer S, Brunet E, Maier T, et al. Procedia Eng., 2012,47(9):17-20

    7. [7]

      [7] Zhu G X, Xu H, Xiao Y Y, et al. ACS Appl. Mater. Interfaces, 2012,4(2):744-751

    8. [8]

      [8] Wang X Q, Xi G C, Xiong S L, et al. Cryst. Growth Des., 2007,7(5):930-934

    9. [9]

      [9] Shin H S, Song J Y, Yu J. Mater. Lett., 2009,63(3):397-399

    10. [10]

      [10] L iu Y, Huang H W, Peng X S. Electrochim. Acta, 2013, 104:89-94

    11. [11]

      [11] Liu J P, Huang X T, Li Y Y. Cryst. Growth Des., 2006,6(7): 1691-1696

    12. [12]

      [12] Duan Y Y, Liu X, Han L, at el. J. Am. Chem. Soc., 2014, 136(20):7193-7196

    13. [13]

      [13] Li D, He Y J, Wang S. J. Phys. Chem. C, 2009,133(30): 12927-12929

    14. [14]

      [14] Yang R C, Tang D X, Tao T X, et al. Mater. Lett., 2013, 113:156-158

    15. [15]

      [15] Wang S L, Li P G, Zhu H W, et al. Powder Technol., 2012,230:48-53

    16. [16]

      [16] Dey K K, Kumar A, Shanker R, et al. RSC Adv., 2012,2(4): 1387-1403

    17. [17]

      [17] Zhang Y, Wang S T, Qian Y T, et al. Solid State Sci., 2006,8(5):462-466

    18. [18]

      [18] Kim S J, Na C W, Hwang I S, et al. Sens. Actuators B, 2012, 168(1):83-89

    19. [19]

      [19] Wang C X, Yin L W, Zhang L Y, et al. Sensors, 2010,10(3): 2088-2106

    20. [20]

      [20] Zhang Y, He X L, Li J P, et al. Sens. Actuators B, 2007, 128(1):293-298

    21. [21]

      [21] Dubal D P, Gund G S, Lokhande C D, et al. Mater. Res. Bull., 2013,48(2):923-928

    22. [22]

      [22] Zhang W X, Wang H, Zhang Y M, et al. Electrochim. Acta, 2013,113:63-68

    23. [23]

      [23] WU Jian-Peng(吴建鹏), CAO Li-Yun(曹丽云), ZHANG Guo-Yun(张国运), et al. J. Instrum. Anal. (仪器分析学 报), 2006,25(4): 95-97

    24. [24]

      [24] Juodkazyte J, Sebeka B, Savickaja I, et al. Electrochim. Acta, 2013,98:109-115

    25. [25]

      [25] Endut Z, Hamdi M, Basirun W J. Thin Solid Films, 2013,528(1):213-216

    26. [26]

      [26] Harish S, Navaneethan M, Archana J, et al. Mater. Lett., 2014,121(4):129-132

    27. [27]

      [27] Anandan S, Lee G J, Wu J J. Ultrason. Sonochem., 2012,19 (3):682-686

    28. [28]

      [28] Dar M A, Ahsanulhaq Q, Kim Y S, et al. Appl. Surf. Sci., 2009,255(12):6279-6284

    29. [29]

      [29] Li R, Du J M, Luanc Y X, et al. Sens. Actuators B, 2012, 168:56-64

    30. [30]

      [30] Kim J, Kim W, Yong K J. J. Phys. Chem. C, 2012,116(29): 15682-15691

    31. [31]

      [31] Yang C, Su X T, Wang J D, et al. Sens. Actuators B, 2013, 185:59-65

    32. [32]

      [32] Barsan N, Simion C, Heine T, et al. J. Electroceram., 2010,25(1):11-9

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(0)
  • Abstract views(409)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return