Citation: MA Ting-Chun, LIU Shu-Juan, TAO Peng, XU Hang, ZHAO Qiang, XU Wen-Juan, ZHANG Ping-Lin, WANG Yi-Fan, LUO Chang-Cheng, LIEN Shui-Chih Alan, HUANG Wei. A Fluorine-Containing Phosphorescent Iridium(Ⅱ) Complex for High-Efficiency Green Organic Light-Emitting Device[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 1034-1040. doi: 10.11862/CJIC.2015.123 shu

A Fluorine-Containing Phosphorescent Iridium(Ⅱ) Complex for High-Efficiency Green Organic Light-Emitting Device

  • Corresponding author: ZHAO Qiang,  WANG Yi-Fan,  HUANG Wei, 
  • Received Date: 22 December 2014
    Available Online: 12 March 2015

    Fund Project: 国家自然科学基金青年基金(No.21201104) (No.21201104)江苏自然科学基金面上项目(No.BK20141422) (No.BK20141422)江苏省有机电子与信息显示重点实验室提升项目(No.BM2012010) (No.BM2012010)江苏高校优势学科建设工程资助项目(No.YX03001) (No.YX03001)教育部创新团队(长江学者和创新团队发展计划)(No.IRT1148) (长江学者和创新团队发展计划)(No.IRT1148)南京邮电大学引进人才启动基金(No.NY213096)资助项目。 (No.NY213096)

  • A green-light emitting iridium(Ⅱ) complex Ir(dfbppy)2(acac) with 2-(3-(2',4'-difluorophenyl)phenyl)pyridine (Hdfbppy) as C^N ligands and 2,4-pentanedione (Hacac) as an ancillary ligand was designed and synthesized for phosphorescent organic light emitting diodes, and its photophysical and electroluminescent properties were investigated. The title complex exhibits a peak emission at 520 nm, a high PL quantum yield of 71%, and a relatively short phosphorescence emission lifetime of 381 ns in CH2Cl2 at room temperature. An organic light-emitting diode using this complex with 4,4'-N,N'-dicarbazolylbiphenyl (CBP) as the host shows a green color with CIE coordinates of (0.33, 0.62), accompanied by a rather excellent performance with a maximum luminance of 68324 cd·m-2 at 7.2 V, the luminous and power efficiencies are 53 cd·A-1 and 37 lm·W-1, respectively.
  • 加载中
    1. [1]

      [1] Kido J, Kimura M, Nagai K. Science, 1995,267:1332-1334

    2. [2]

      [2] Holder E, Langeveld B M W, Schubert U S. Adv. Mater., 2005,17:1109-1121

    3. [3]

      [3] Sun Y, Giebink N C, Kanno H, et al. Nature, 2006,440:908-912

    4. [4]

      [4] Reineke S, Lindner F, Schwartz G, et al. Nature, 2009,459: 234-238

    5. [5]

      [5] Xiao L, Chen Z, Qu B, et al. Adv. Mater., 2011,23:926-952

    6. [6]

      [6] Li G J, Fleetham T, Li J. Adv. Mater., 2014,26:2931-2936

    7. [7]

      [7] Lamansky S, Djurovich P, Murphy D, et al. J. Am. Chem. Soc., 2001,123:4304-4312

    8. [8]

      [8] Li J, Djurovich P I, Alleyne B D, et al. Inorg. Chem., 2005, 44:1713-1727

    9. [9]

      [9] Chou P T, Chi Y. Chem. Eur. J., 2007,13:380-395

    10. [10]

      [10] Chi Y, Chou P T. Chem. Soc. Rev., 2010,39:638-655

    11. [11]

      [11] Chen Z Q, Bian Z Q, Huang C H. Adv. Mater., 2010,22: 1534-1539

    12. [12]

      [12] Schwartz G, Reineke S, Rosenow T C. Adv. Funct. Mater., 2009,19:1319-1333

    13. [13]

      [13] Velusamy M, Chen C H, Chou P T. Organometallics, 2010, 29:3912-3921

    14. [14]

      [14] Cheng G, Chan K T, To W P, et al. Adv. Mater., 2014,26: 2540-2546

    15. [15]

      [15] Wang X, Chang Y L, Lu J S, et al. Adv. Funct. Mater., 2014,24:1911-1927

    16. [16]

      [16] Zhang L Q, Lan T, Li M, et al. Dalton Trans., 2014,43:6500-6512

    17. [17]

      [17] Li H, Zhan H M, Wang L X. Inorg. Chem., 2014,53:810-821

    18. [18]

      [18] Tang M C, Tsang P K D, Chan M M L, et al. Angew. Chem. Int. Ed., 2013,52:446-449

    19. [19]

      [19] Baldo M A, O'Brien D F, Forrest S R. Nature, 1998,395: 151-154

    20. [20]

      [20] Lamansky S, Djurovich P, Thompson M E. Inorg. Chem., 2001,40:1704-1711

    21. [21]

      [21] Thomas K R J, Velusamy M, Lin J T, et al. Inorg. Chem., 2005,44:5677-5685

    22. [22]

      [22] Xia D B, Wang B, Chen B, et al. Angew. Chem. Int. Ed., 2014,53:1048-1052

    23. [23]

      [23] He L, Ma D X, Duan L, et al. Inorg. Chem., 2012,51:4502-4510

    24. [24]

      [24] Wallace C H C, Chan W K, Yuan Y P. Adv. Mater., 2014, 26:2368-2599

    25. [25]

      [25] Xu X B, Zhou G J, Dang J S, et al. Chem. Commun., 2014, 50:2473-2476

    26. [26]

      [26] Dumur F, Lepeltier M, Siboni H Z, et al. Adv. Opt. Mater., 2014,2:262-266

    27. [27]

      [27] Yu T Z, Cao Y, Stephen Z D, et al. RSC Adv., 2014,4:554-562

    28. [28]

      [28] Li H Y, Li T Y, Zheng Y X, et al. J. Mater. Chem. C, 2014, 2:1116-1124

    29. [29]

      [29] Tian W W, Jiang W, Sun Y M, et al. J. Mater. Chem. C, 2014,2:1104-1115

    30. [30]

      [30] Wang R J, Liu D, Li J Y, et al. Adv. Mater., 2011,23:2823-2827

    31. [31]

      [31] Yang C L, Ma D G, Qin J G, et al. Adv. Funct. Mater., 2007,17:651-661

    32. [32]

      [32] Haneder S, Como E D, Feldmann J, et al. Adv. Mater., 2008,20:3325-3330

    33. [33]

      [33] Ding J Q, Wang B, Wang L X, et al. Angew. Chem. Int. Ed., 2009,48:6664-6666

    34. [34]

      [34] Zhao Q, Liu S J, Shi M, et al. Inorg. Chem., 2006,45:6152-6160

    35. [35]

      [35] Zhao Q, Jiang C Y, Shi M, et al. Organometallics, 2006,25: 3631-3638

    36. [36]

      [36] Wong W Y, Ho C L, Gao Z Q, et al. Angew. Chem. Int. Ed., 2006,45:7800-7803

    37. [37]

      [37] Kozhevnikov V N, Zheng Y H, Clough M, et al. Chem. Mater., 2013,25:2352-2358

    38. [38]

      [38] Zhang B H, Tan G P, Lam C S, et al. Adv. Mater., 2012,24: 1873-1877

    39. [39]

      [39] Shavaleev N M, Monti F, Costa R D, et al. Inorg. Chem., 2012,51:2263-2271

    40. [40]

      [40] Fan C, Li Y H, Yang C L, et al. Chem. Mater., 2012,24: 4581-4587

    41. [41]

      [41] Tordera D, Delgado M, Orti E, et al. Chem. Mater., 2012,24: 1896-1903

    42. [42]

      [42] Rai V K, Nishiura M, Takimoto M, et al. Inorg. Chem., 2012, 51:822-835

    43. [43]

      [43] Shi C, Sun H B, Tang X, et al. Angew. Chem. Int. Ed., 2013,52:13434-13438

    44. [44]

      [44] Shi C, Sun H B, Jiang Q B, et al. Chem. Commun., 2013, 49:4746-4748

    45. [45]

      [45] Jou J H, Lin Y X, Peng S H, et al. Adv. Funct. Mater., 2014,24:555-562

    46. [46]

      [46] Brulatti P, Gildea R J, Howard J A K, et al. Inorg. Chem., 2012,51:3813-3826

    47. [47]

      [47] Yang C H, Mauro M, Polo F, et al. Chem. Mater., 2012,24: 3684-3695

    48. [48]

      [48] Coppo P, Plummer E A, De Cola L. Chem. Commun., 2004: 1774-1775

    49. [49]

      [49] Chiu Y C, Hung J Y, Chi Y, et al. Adv. Mater., 2009,21: 2221-2225

    50. [50]

      [50] Xu Q L, Wang C C, Li T Y, et al. Inorg. Chem., 2013,52: 4916-4925

    51. [51]

      [51] Nonoyama M. Bull Chem. Soc. Jpn., 1974,7:767-768

    52. [52]

      [52] Zhou G J, Wang Q, Ho C L, et al. Chem. Asian J., 2008,3: 1830-1841

    53. [53]

      [53] Jung S O, Zhao Q H, Park J W, et al. Org. Electron., 2009, 10:1066-1073

    54. [54]

      [54] Zhou G J, Ho C L, Wong W Y, et al. Adv. Funct. Mater., 2008,18:499-511

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(2)
  • Abstract views(339)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return