Citation: JING Shao-Dong, CHENG Su, ZHOU Rui, WEI Da-Qing, ZHOU Yu. Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 824-838. doi: 10.11862/CJIC.2015.119 shu

Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium

  • Received Date: 10 November 2014
    Available Online: 25 February 2015

    Fund Project: 国家基础研究项目(No.2012CB933900) (No.2012CB933900)国家自然科学基金(No.51002039和51021002) (No.51002039和51021002)黑龙江省自然科学基金(No.QC2013C043) (No.QC2013C043)材料研究与应用黑龙江省高校重点实验室基金(No.cljj2013) 资助项目。 (No.cljj2013)

  • The bioactive nanowire of sodium hydrogen titanium oxide (Na0.8H1.2Ti3O7) was obtained by Chemical treating the surface of TiO2-based coating containing Si and Ca (SC) prepared by microarc oxidation (MAO). During the chemical treatment, the dissolution of Ca and Si, and the deposition of Na appear on the surface of the SC coating. The chemically treated SC coating shows better hydrophilic and apatite-formation ability than those of the SC coating, which could be associated with the special structure such as OH group in the sodium hydrogen titanium oxide (SHTO) as well as the Ti-OH group formation during the simulated body fluid immersion. At the same time, the SHTO nanowire is more suitable for the MC3T3-E1 cell adhesion and proliferation due to surface morphology, phase composition, OH group structure and better wetting ability.
  • 加载中
    1. [1]

      [1] Liu X Y, Paul K C, Ding C X. Mater. Sci. Eng., 2004,47(3/4):49-121

    2. [2]

      [2] Yang Y C, Chang E W, Lee S Y et al. Biomaterials, 2000,21(13):1327-1333

    3. [3]

      [3] Zheng X B, Huang M H, Ding C X. Biomaterials, 2000,21(8):841-849

    4. [4]

      [4] Hsieh M F, Perng L H, Chin T S. Mater. Chem. Phys., 2002, 74(3):245-250

    5. [5]

      [5] Milella E, Cosentino F, Licciulli A, et al. Biomaterials, 2001, 22(11):1425-1431

    6. [6]

      [6] Ban S, Maruno S. Biomaterials, 1995,16(13):977-981

    7. [7]

      [7] Zhang Q Y, Leng Y, Xin R L. Biomaterials, 2005,26(16): 2857-2865

    8. [8]

      [8] Yerokhin A L, Nie X, Leyland A. Surf. Coat. Technol., 1999, 122(2/3):73-93

    9. [9]

      [9] Wei D Q, Zhou Y, Wang Y M, et al. Acta Biomater, 2007,3(5):817-827

    10. [10]

      [10] Wei D Q, Zhou Y, Wang Y M, et al. Surf. Coat. Technol., 2007,201(21):8723-8729

    11. [11]

      [11] Wei D Q, Zhou Y, Wang Y M, et al. Mater. Chem. Phys., 2007,104(1):177-182

    12. [12]

      [12] Wei D Q, Zhou Y, Wang Y M, et al. Appl. Surf. Sci., 2007, 253(11):5045-5050

    13. [13]

      [13] Wei D Q, Zhou Y, Wang Y M, et al. Ceram. Int., 2008,34(5):1139-1144

    14. [14]

      [14] Fini M, Cigada A, Rondelli G. Biomaterials, 1999,20(17): 1587-1594

    15. [15]

      [15] Zhu X L, Kim K H, Jeong Y S. Biomaterials, 2001,22:2199-2206

    16. [16]

      [16] Zhu X L, Ong J L, Kim K H, et al. Surf. Coat. Technol., 2003, 168:249-258

    17. [17]

      [18] Frauchiger V M, Schlottig F, Textor M. Biomaterials, 2004, 25(4):593-606

    18. [18]

      [19] Li L H, Kong Y M, Kim H W. Biomaterials, 2004,25(14): 2867-2875

    19. [19]

      [20] Song W H, Jun Y K, Han Y, et al. Biomaterials, 2004,25(17):3341-3349

    20. [20]

      [21] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(8): 3404-3411

    21. [21]

      [22] Cheng S, Wei D Q, Zhou Y. Surf. Coat. Technol., 2011,205(13/14):3798-3804

    22. [22]

      [23] Wei D Q, Zhou Y, Yang C H. Colloid. Surf. B, 2009,74(1): 230-237

    23. [23]

      [24] Wei D Q, Zhou Y, Wang Y M, Jia D C. Thin. Solid Films, 2008,516(8):1818-1825

    24. [24]

      [25] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(7): 2657-2664

    25. [25]

      [26] Wei D Q, Zhou R, Zhou Y, et al. J. Mater. Chem. B, 2014, 2:2993-3008

    26. [26]

      [27] Zhang J Y, Ai H J, Qi M. Surf. Coat. Technol., 2013,228: 202-205

    27. [27]

      [28] Samanipour F, Bayati M R, Taheri M, et al. J. Alloys Compd., 2011,509(38):9351-9355

    28. [28]

      [29] Alsaran A, Purcek G, Celik A, et al. Surf.Coat. Technol., 2011,205:537-542

    29. [29]

      [30] Bai Y, Song P, Lee M H, et al. Appl. Surf. Sci., 2011,257(15):7010-7018

    30. [30]

      [31] Kim D Y, Kim M, Jang J H, et al. Acta. Biomater., 2009,5(6):2196-2205

    31. [31]

      [32] Oyane A, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,65(17):188-195

    32. [32]

      [33] Areva S, Peltola T, Rosenholm J B, et al. Chem. Mater., 2002,14(4):1614-1621

    33. [33]

      [34] Ivanova O P, Naumkin A V, Vasilyev L A. Vacuum, 1995, 46(6):363-368

    34. [34]

      [35] Ng B S, Annergren I, Soutar A M, et al. Biomaterials, 2005, 26(10):1087-1095

    35. [35]

      [36] Uchida M, Kim H M, Biomed J, et al. J. Biomed. Mater. Res., 2002,63(5):522-530

    36. [36]

      [37] Yang X D, Zhang B, Gu Z W, et al. Appl. Surf. Sci., 2010, 256(9):2700-2704

    37. [37]

      [38] Takamasa Onokia, Atsushi Nakahiraa. Mater. Sci. Eng. B, 2010,173(1/2/3):72-75

    38. [38]

      [39] Müller L, Müller F A. Acta Biomater., 2006,2(2):181-189

    39. [39]

      [40] Wei D Q, Zhou Y, et al. Surf. Coat. Technol., 2008,202(20): 5012-5019

    40. [40]

      [41] Cheng S, Wei D Q, Zhou Y, et al. Ceram. Int., 2011,37(7): 2505-2512

    41. [41]

      [42] Ito A, Maekawa K, Tateishi T, et al. J. Biomed. Mater. Res., 1997,36(4):522-528

    42. [42]

      [43] Uchida M, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,64(1):164-170

    43. [43]

      [44] Zhou R, Wei D Q, Zhou Y, et al. Mater. Sci. Eng. C, 2014, 39:186-195

    44. [44]

      [45] Hosseinkhani H, Hong P D, Yu D S. Int. J. Nanomed., 2012,7(7):3035-2043

    45. [45]

      [46] Hosseinkhani H, Hosseinkhani M, Hattori S. J. Biomed. Mater. Res. A, 2010,94(1):1-8

    46. [46]

      [47] Mohajeri S, Hosseinkhani H, Ebrahimi N G. Tissue. Eng. A, 2010,16(12):3821-2830

    47. [47]

      [48] Hosseinkhani H, Hong P D, Yu D S. Chem. Rev., 2013,113(7):4837-4861

    48. [48]

      [49] Hosseinkhani H, Hiraoka Y, Li C H. ACS. Chem. Neurosci., 2013,4(8):1229-1235

    49. [49]

      [50] Lindstrom S, Iles A, Persson J. J. Biomech. Sci. Eng., 2010, 5(3):272-279

    50. [50]

      [51] Hosseinkhani H, Hosseinkhani M, Gabrielson N P. J. Biomed. Mater. Res. A, 2008,85(1):47-60

    51. [51]

      [52] Hosseinkhani H, Hosseinkhani M, Kobayashi H. Biomed. Mater., 2006,1(1):8-15

    52. [52]

      [53] Hosse inkhani H, Hosseinkhani M, Kobayashi H. J. Bioact. Compat. Polym., 2006,21(4): 277-296

    53. [53]

      [54] Hosseinkhani H, Hosseinkhani M, Tian F. Tissue. Eng., 2007,13(1):11-19

    54. [54]

      [55] Huang C F, Chiang H J, Lin H J. J. Electrochem. Soc., 2014,161:15-20

    55. [55]

      [56] Ou S F, Chen C S, Hosseinkhani H. Int. J. Nanotechnol., 2013,10(10/11):945-958

    56. [56]

      [57] Hosseinkhani H, Hosseinkhani M, Tian F. Biomaterials, 2006,27(22):4079-4086

    57. [57]

      [58] Okpalugo T I T, McKenna E, Magee A C. J. Biomed. Mater. Res., 2004,71(2):201-208

    58. [58]

      [59] Michiardia M, Aparicioa C, Ratnerb B. Biomaterials, 2007, 28(4):586-594

    59. [59]

      [60] Kennedy S, Washburn N, Simon C G. Biomaterials, 2006,27(20):3817-3824

    60. [60]

      [61] Discher D E, Janmey P, Wang Y. Science, 2005,310(5751): 1139-1143

  • 加载中
    1. [1]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    16. [16]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    17. [17]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    18. [18]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(259)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return