Citation: JING Shao-Dong, CHENG Su, ZHOU Rui, WEI Da-Qing, ZHOU Yu. Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 824-838. doi: 10.11862/CJIC.2015.119 shu

Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium

  • Received Date: 10 November 2014
    Available Online: 25 February 2015

    Fund Project: 国家基础研究项目(No.2012CB933900) (No.2012CB933900)国家自然科学基金(No.51002039和51021002) (No.51002039和51021002)黑龙江省自然科学基金(No.QC2013C043) (No.QC2013C043)材料研究与应用黑龙江省高校重点实验室基金(No.cljj2013) 资助项目。 (No.cljj2013)

  • The bioactive nanowire of sodium hydrogen titanium oxide (Na0.8H1.2Ti3O7) was obtained by Chemical treating the surface of TiO2-based coating containing Si and Ca (SC) prepared by microarc oxidation (MAO). During the chemical treatment, the dissolution of Ca and Si, and the deposition of Na appear on the surface of the SC coating. The chemically treated SC coating shows better hydrophilic and apatite-formation ability than those of the SC coating, which could be associated with the special structure such as OH group in the sodium hydrogen titanium oxide (SHTO) as well as the Ti-OH group formation during the simulated body fluid immersion. At the same time, the SHTO nanowire is more suitable for the MC3T3-E1 cell adhesion and proliferation due to surface morphology, phase composition, OH group structure and better wetting ability.
  • 加载中
    1. [1]

      [1] Liu X Y, Paul K C, Ding C X. Mater. Sci. Eng., 2004,47(3/4):49-121

    2. [2]

      [2] Yang Y C, Chang E W, Lee S Y et al. Biomaterials, 2000,21(13):1327-1333

    3. [3]

      [3] Zheng X B, Huang M H, Ding C X. Biomaterials, 2000,21(8):841-849

    4. [4]

      [4] Hsieh M F, Perng L H, Chin T S. Mater. Chem. Phys., 2002, 74(3):245-250

    5. [5]

      [5] Milella E, Cosentino F, Licciulli A, et al. Biomaterials, 2001, 22(11):1425-1431

    6. [6]

      [6] Ban S, Maruno S. Biomaterials, 1995,16(13):977-981

    7. [7]

      [7] Zhang Q Y, Leng Y, Xin R L. Biomaterials, 2005,26(16): 2857-2865

    8. [8]

      [8] Yerokhin A L, Nie X, Leyland A. Surf. Coat. Technol., 1999, 122(2/3):73-93

    9. [9]

      [9] Wei D Q, Zhou Y, Wang Y M, et al. Acta Biomater, 2007,3(5):817-827

    10. [10]

      [10] Wei D Q, Zhou Y, Wang Y M, et al. Surf. Coat. Technol., 2007,201(21):8723-8729

    11. [11]

      [11] Wei D Q, Zhou Y, Wang Y M, et al. Mater. Chem. Phys., 2007,104(1):177-182

    12. [12]

      [12] Wei D Q, Zhou Y, Wang Y M, et al. Appl. Surf. Sci., 2007, 253(11):5045-5050

    13. [13]

      [13] Wei D Q, Zhou Y, Wang Y M, et al. Ceram. Int., 2008,34(5):1139-1144

    14. [14]

      [14] Fini M, Cigada A, Rondelli G. Biomaterials, 1999,20(17): 1587-1594

    15. [15]

      [15] Zhu X L, Kim K H, Jeong Y S. Biomaterials, 2001,22:2199-2206

    16. [16]

      [16] Zhu X L, Ong J L, Kim K H, et al. Surf. Coat. Technol., 2003, 168:249-258

    17. [17]

      [18] Frauchiger V M, Schlottig F, Textor M. Biomaterials, 2004, 25(4):593-606

    18. [18]

      [19] Li L H, Kong Y M, Kim H W. Biomaterials, 2004,25(14): 2867-2875

    19. [19]

      [20] Song W H, Jun Y K, Han Y, et al. Biomaterials, 2004,25(17):3341-3349

    20. [20]

      [21] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(8): 3404-3411

    21. [21]

      [22] Cheng S, Wei D Q, Zhou Y. Surf. Coat. Technol., 2011,205(13/14):3798-3804

    22. [22]

      [23] Wei D Q, Zhou Y, Yang C H. Colloid. Surf. B, 2009,74(1): 230-237

    23. [23]

      [24] Wei D Q, Zhou Y, Wang Y M, Jia D C. Thin. Solid Films, 2008,516(8):1818-1825

    24. [24]

      [25] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(7): 2657-2664

    25. [25]

      [26] Wei D Q, Zhou R, Zhou Y, et al. J. Mater. Chem. B, 2014, 2:2993-3008

    26. [26]

      [27] Zhang J Y, Ai H J, Qi M. Surf. Coat. Technol., 2013,228: 202-205

    27. [27]

      [28] Samanipour F, Bayati M R, Taheri M, et al. J. Alloys Compd., 2011,509(38):9351-9355

    28. [28]

      [29] Alsaran A, Purcek G, Celik A, et al. Surf.Coat. Technol., 2011,205:537-542

    29. [29]

      [30] Bai Y, Song P, Lee M H, et al. Appl. Surf. Sci., 2011,257(15):7010-7018

    30. [30]

      [31] Kim D Y, Kim M, Jang J H, et al. Acta. Biomater., 2009,5(6):2196-2205

    31. [31]

      [32] Oyane A, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,65(17):188-195

    32. [32]

      [33] Areva S, Peltola T, Rosenholm J B, et al. Chem. Mater., 2002,14(4):1614-1621

    33. [33]

      [34] Ivanova O P, Naumkin A V, Vasilyev L A. Vacuum, 1995, 46(6):363-368

    34. [34]

      [35] Ng B S, Annergren I, Soutar A M, et al. Biomaterials, 2005, 26(10):1087-1095

    35. [35]

      [36] Uchida M, Kim H M, Biomed J, et al. J. Biomed. Mater. Res., 2002,63(5):522-530

    36. [36]

      [37] Yang X D, Zhang B, Gu Z W, et al. Appl. Surf. Sci., 2010, 256(9):2700-2704

    37. [37]

      [38] Takamasa Onokia, Atsushi Nakahiraa. Mater. Sci. Eng. B, 2010,173(1/2/3):72-75

    38. [38]

      [39] Müller L, Müller F A. Acta Biomater., 2006,2(2):181-189

    39. [39]

      [40] Wei D Q, Zhou Y, et al. Surf. Coat. Technol., 2008,202(20): 5012-5019

    40. [40]

      [41] Cheng S, Wei D Q, Zhou Y, et al. Ceram. Int., 2011,37(7): 2505-2512

    41. [41]

      [42] Ito A, Maekawa K, Tateishi T, et al. J. Biomed. Mater. Res., 1997,36(4):522-528

    42. [42]

      [43] Uchida M, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,64(1):164-170

    43. [43]

      [44] Zhou R, Wei D Q, Zhou Y, et al. Mater. Sci. Eng. C, 2014, 39:186-195

    44. [44]

      [45] Hosseinkhani H, Hong P D, Yu D S. Int. J. Nanomed., 2012,7(7):3035-2043

    45. [45]

      [46] Hosseinkhani H, Hosseinkhani M, Hattori S. J. Biomed. Mater. Res. A, 2010,94(1):1-8

    46. [46]

      [47] Mohajeri S, Hosseinkhani H, Ebrahimi N G. Tissue. Eng. A, 2010,16(12):3821-2830

    47. [47]

      [48] Hosseinkhani H, Hong P D, Yu D S. Chem. Rev., 2013,113(7):4837-4861

    48. [48]

      [49] Hosseinkhani H, Hiraoka Y, Li C H. ACS. Chem. Neurosci., 2013,4(8):1229-1235

    49. [49]

      [50] Lindstrom S, Iles A, Persson J. J. Biomech. Sci. Eng., 2010, 5(3):272-279

    50. [50]

      [51] Hosseinkhani H, Hosseinkhani M, Gabrielson N P. J. Biomed. Mater. Res. A, 2008,85(1):47-60

    51. [51]

      [52] Hosseinkhani H, Hosseinkhani M, Kobayashi H. Biomed. Mater., 2006,1(1):8-15

    52. [52]

      [53] Hosse inkhani H, Hosseinkhani M, Kobayashi H. J. Bioact. Compat. Polym., 2006,21(4): 277-296

    53. [53]

      [54] Hosseinkhani H, Hosseinkhani M, Tian F. Tissue. Eng., 2007,13(1):11-19

    54. [54]

      [55] Huang C F, Chiang H J, Lin H J. J. Electrochem. Soc., 2014,161:15-20

    55. [55]

      [56] Ou S F, Chen C S, Hosseinkhani H. Int. J. Nanotechnol., 2013,10(10/11):945-958

    56. [56]

      [57] Hosseinkhani H, Hosseinkhani M, Tian F. Biomaterials, 2006,27(22):4079-4086

    57. [57]

      [58] Okpalugo T I T, McKenna E, Magee A C. J. Biomed. Mater. Res., 2004,71(2):201-208

    58. [58]

      [59] Michiardia M, Aparicioa C, Ratnerb B. Biomaterials, 2007, 28(4):586-594

    59. [59]

      [60] Kennedy S, Washburn N, Simon C G. Biomaterials, 2006,27(20):3817-3824

    60. [60]

      [61] Discher D E, Janmey P, Wang Y. Science, 2005,310(5751): 1139-1143

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    17. [17]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(0)
  • Abstract views(201)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return