Citation: JING Shao-Dong, CHENG Su, ZHOU Rui, WEI Da-Qing, ZHOU Yu. Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 824-838. doi: 10.11862/CJIC.2015.119 shu

Structure, Bioactivity and MC3T3-E1 Cell Response of Sodium Hydrogen Titanium Oxide Nanowire on Titanium

  • Received Date: 10 November 2014
    Available Online: 25 February 2015

    Fund Project: 国家基础研究项目(No.2012CB933900) (No.2012CB933900)国家自然科学基金(No.51002039和51021002) (No.51002039和51021002)黑龙江省自然科学基金(No.QC2013C043) (No.QC2013C043)材料研究与应用黑龙江省高校重点实验室基金(No.cljj2013) 资助项目。 (No.cljj2013)

  • The bioactive nanowire of sodium hydrogen titanium oxide (Na0.8H1.2Ti3O7) was obtained by Chemical treating the surface of TiO2-based coating containing Si and Ca (SC) prepared by microarc oxidation (MAO). During the chemical treatment, the dissolution of Ca and Si, and the deposition of Na appear on the surface of the SC coating. The chemically treated SC coating shows better hydrophilic and apatite-formation ability than those of the SC coating, which could be associated with the special structure such as OH group in the sodium hydrogen titanium oxide (SHTO) as well as the Ti-OH group formation during the simulated body fluid immersion. At the same time, the SHTO nanowire is more suitable for the MC3T3-E1 cell adhesion and proliferation due to surface morphology, phase composition, OH group structure and better wetting ability.
  • 加载中
    1. [1]

      [1] Liu X Y, Paul K C, Ding C X. Mater. Sci. Eng., 2004,47(3/4):49-121

    2. [2]

      [2] Yang Y C, Chang E W, Lee S Y et al. Biomaterials, 2000,21(13):1327-1333

    3. [3]

      [3] Zheng X B, Huang M H, Ding C X. Biomaterials, 2000,21(8):841-849

    4. [4]

      [4] Hsieh M F, Perng L H, Chin T S. Mater. Chem. Phys., 2002, 74(3):245-250

    5. [5]

      [5] Milella E, Cosentino F, Licciulli A, et al. Biomaterials, 2001, 22(11):1425-1431

    6. [6]

      [6] Ban S, Maruno S. Biomaterials, 1995,16(13):977-981

    7. [7]

      [7] Zhang Q Y, Leng Y, Xin R L. Biomaterials, 2005,26(16): 2857-2865

    8. [8]

      [8] Yerokhin A L, Nie X, Leyland A. Surf. Coat. Technol., 1999, 122(2/3):73-93

    9. [9]

      [9] Wei D Q, Zhou Y, Wang Y M, et al. Acta Biomater, 2007,3(5):817-827

    10. [10]

      [10] Wei D Q, Zhou Y, Wang Y M, et al. Surf. Coat. Technol., 2007,201(21):8723-8729

    11. [11]

      [11] Wei D Q, Zhou Y, Wang Y M, et al. Mater. Chem. Phys., 2007,104(1):177-182

    12. [12]

      [12] Wei D Q, Zhou Y, Wang Y M, et al. Appl. Surf. Sci., 2007, 253(11):5045-5050

    13. [13]

      [13] Wei D Q, Zhou Y, Wang Y M, et al. Ceram. Int., 2008,34(5):1139-1144

    14. [14]

      [14] Fini M, Cigada A, Rondelli G. Biomaterials, 1999,20(17): 1587-1594

    15. [15]

      [15] Zhu X L, Kim K H, Jeong Y S. Biomaterials, 2001,22:2199-2206

    16. [16]

      [16] Zhu X L, Ong J L, Kim K H, et al. Surf. Coat. Technol., 2003, 168:249-258

    17. [17]

      [18] Frauchiger V M, Schlottig F, Textor M. Biomaterials, 2004, 25(4):593-606

    18. [18]

      [19] Li L H, Kong Y M, Kim H W. Biomaterials, 2004,25(14): 2867-2875

    19. [19]

      [20] Song W H, Jun Y K, Han Y, et al. Biomaterials, 2004,25(17):3341-3349

    20. [20]

      [21] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(8): 3404-3411

    21. [21]

      [22] Cheng S, Wei D Q, Zhou Y. Surf. Coat. Technol., 2011,205(13/14):3798-3804

    22. [22]

      [23] Wei D Q, Zhou Y, Yang C H. Colloid. Surf. B, 2009,74(1): 230-237

    23. [23]

      [24] Wei D Q, Zhou Y, Wang Y M, Jia D C. Thin. Solid Films, 2008,516(8):1818-1825

    24. [24]

      [25] Cheng S, Wei D Q, Zhou Y. Appl. Surf. Sci., 2011,257(7): 2657-2664

    25. [25]

      [26] Wei D Q, Zhou R, Zhou Y, et al. J. Mater. Chem. B, 2014, 2:2993-3008

    26. [26]

      [27] Zhang J Y, Ai H J, Qi M. Surf. Coat. Technol., 2013,228: 202-205

    27. [27]

      [28] Samanipour F, Bayati M R, Taheri M, et al. J. Alloys Compd., 2011,509(38):9351-9355

    28. [28]

      [29] Alsaran A, Purcek G, Celik A, et al. Surf.Coat. Technol., 2011,205:537-542

    29. [29]

      [30] Bai Y, Song P, Lee M H, et al. Appl. Surf. Sci., 2011,257(15):7010-7018

    30. [30]

      [31] Kim D Y, Kim M, Jang J H, et al. Acta. Biomater., 2009,5(6):2196-2205

    31. [31]

      [32] Oyane A, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,65(17):188-195

    32. [32]

      [33] Areva S, Peltola T, Rosenholm J B, et al. Chem. Mater., 2002,14(4):1614-1621

    33. [33]

      [34] Ivanova O P, Naumkin A V, Vasilyev L A. Vacuum, 1995, 46(6):363-368

    34. [34]

      [35] Ng B S, Annergren I, Soutar A M, et al. Biomaterials, 2005, 26(10):1087-1095

    35. [35]

      [36] Uchida M, Kim H M, Biomed J, et al. J. Biomed. Mater. Res., 2002,63(5):522-530

    36. [36]

      [37] Yang X D, Zhang B, Gu Z W, et al. Appl. Surf. Sci., 2010, 256(9):2700-2704

    37. [37]

      [38] Takamasa Onokia, Atsushi Nakahiraa. Mater. Sci. Eng. B, 2010,173(1/2/3):72-75

    38. [38]

      [39] Müller L, Müller F A. Acta Biomater., 2006,2(2):181-189

    39. [39]

      [40] Wei D Q, Zhou Y, et al. Surf. Coat. Technol., 2008,202(20): 5012-5019

    40. [40]

      [41] Cheng S, Wei D Q, Zhou Y, et al. Ceram. Int., 2011,37(7): 2505-2512

    41. [41]

      [42] Ito A, Maekawa K, Tateishi T, et al. J. Biomed. Mater. Res., 1997,36(4):522-528

    42. [42]

      [43] Uchida M, Kim H M, Nakamura T, et al. J. Biomed. Mater. Res., 2003,64(1):164-170

    43. [43]

      [44] Zhou R, Wei D Q, Zhou Y, et al. Mater. Sci. Eng. C, 2014, 39:186-195

    44. [44]

      [45] Hosseinkhani H, Hong P D, Yu D S. Int. J. Nanomed., 2012,7(7):3035-2043

    45. [45]

      [46] Hosseinkhani H, Hosseinkhani M, Hattori S. J. Biomed. Mater. Res. A, 2010,94(1):1-8

    46. [46]

      [47] Mohajeri S, Hosseinkhani H, Ebrahimi N G. Tissue. Eng. A, 2010,16(12):3821-2830

    47. [47]

      [48] Hosseinkhani H, Hong P D, Yu D S. Chem. Rev., 2013,113(7):4837-4861

    48. [48]

      [49] Hosseinkhani H, Hiraoka Y, Li C H. ACS. Chem. Neurosci., 2013,4(8):1229-1235

    49. [49]

      [50] Lindstrom S, Iles A, Persson J. J. Biomech. Sci. Eng., 2010, 5(3):272-279

    50. [50]

      [51] Hosseinkhani H, Hosseinkhani M, Gabrielson N P. J. Biomed. Mater. Res. A, 2008,85(1):47-60

    51. [51]

      [52] Hosseinkhani H, Hosseinkhani M, Kobayashi H. Biomed. Mater., 2006,1(1):8-15

    52. [52]

      [53] Hosse inkhani H, Hosseinkhani M, Kobayashi H. J. Bioact. Compat. Polym., 2006,21(4): 277-296

    53. [53]

      [54] Hosseinkhani H, Hosseinkhani M, Tian F. Tissue. Eng., 2007,13(1):11-19

    54. [54]

      [55] Huang C F, Chiang H J, Lin H J. J. Electrochem. Soc., 2014,161:15-20

    55. [55]

      [56] Ou S F, Chen C S, Hosseinkhani H. Int. J. Nanotechnol., 2013,10(10/11):945-958

    56. [56]

      [57] Hosseinkhani H, Hosseinkhani M, Tian F. Biomaterials, 2006,27(22):4079-4086

    57. [57]

      [58] Okpalugo T I T, McKenna E, Magee A C. J. Biomed. Mater. Res., 2004,71(2):201-208

    58. [58]

      [59] Michiardia M, Aparicioa C, Ratnerb B. Biomaterials, 2007, 28(4):586-594

    59. [59]

      [60] Kennedy S, Washburn N, Simon C G. Biomaterials, 2006,27(20):3817-3824

    60. [60]

      [61] Discher D E, Janmey P, Wang Y. Science, 2005,310(5751): 1139-1143

  • 加载中
    1. [1]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    6. [6]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    10. [10]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    11. [11]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    16. [16]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    19. [19]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(0)
  • Abstract views(340)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return