Citation:
ZHENG Zhen-Miao, TANG Xin-Cun, WANG Yang, JIN Yuan, MENG Jia, LIU Wen-Ming, WANG Tao. Solvothermal Synthesis and Electrochemical Performance of Flowerlike LiFePO4 Hierarchically Microstructures[J]. Chinese Journal of Inorganic Chemistry,
;2015, (4): 731-738.
doi:
10.11862/CJIC.2015.106
-
The cathode material LiFePO4 with high tap density of 1.3 g·cm-3 was synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopies. The results show that the as-prepared samples were flowerlike LiFePO4 which consists of single-crystalline nanoplates with an open porous hierarchical structure. A reasonable formation mechanism is proposed based on time dependent experiments. The main evolving process involves the following steps: nucleation, growth and oriented assembling. The electrochemical properties of the LiFePO4 cathode is found to exhibit excellent rate capability (i.e., discharge capacity of 74.8 mAh·g-1 at 10C) and cycling performance (i.e., > 93% of capacity retention rate after 50 cycles).
-
-
-
[1]
[1] Scrosati B. Electrochim. Acta, 2000,45(15):2461-2466
-
[2]
[2] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194
-
[3]
[3] Churikov A V, Ivanishchev A V, Ivanishcheva I A, et al. Electrochim. Acta, 2010,55(8):2939-2950
-
[4]
[4] Morgan D, Van der Ven A, Ceder G. Electrochem. Solid-State Lett., 2004,7(2):A30-A32
-
[5]
[5] Delacourt C, Poizot P, Levasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355
-
[6]
[6] Sun C S, Zhou Z, Xu Z G, et al. J. Power Sources, 2009,193(2):841-845
-
[7]
[7] Sun C S, Zhang Y, Zhang X J, et al. J. Power Sources, 2010, 195(11):3680-3683
-
[8]
[8] Wang Y G, He P, Zhou H S. Energy Environ. Sci., 2011,4(3):805-817
-
[9]
[9] Wang J J, Sun X L. Energy Environ. Sci., 2012,5(1):5163-5185
-
[10]
[10] Saravanan K, Balaya P, Reddy M V, et al. Energy Environ. Sci., 2010,3(4):457-463
-
[11]
[11] Nan C Y, Lu J, Chen C, et al. J. Mater. Chem., 2011, 21, 9994-9996
-
[12]
[12] Wang L, He X M, Sun W T, et al. Nano Lett., 2012,12(11): 5632-5636
-
[13]
[13] Dominko R, Bele M, Goupil J M, et al. Chem. Mater., 2007, 19(12):2960-2969
-
[14]
[14] Doherty C M, Caruso R A, Smarsly B M, et al. Chem. Mater., 2009,21(13):2895-2903
-
[15]
[15] Wang M, Yang Y, Zhang Y X. Nanoscale, 2011,3(10):4434-4439
-
[16]
[16] Sun C W, Rajasekhara S, Dong Y Z, et al. J. Am. Chem. Soc., 2011,133(7):2132-2135
-
[17]
[17] Franger S, Le Cras F, Bourbon C, et al. Electrochem. Solid-State Lett., 2002,5(10):A231-A233
-
[18]
[18] HAN En-Shan(韩恩山), FENG Zhi-Hui(冯智辉), WEI Zi-Hai(魏子海), et al. Inorg. Chem. Ind.(无机盐工业), 2008, 40(1):22-25
-
[19]
[19] TANG Hong(唐红), GUO Xiao-Dong(郭孝东), TANG Yan (唐艳), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(4):809-814
-
[20]
[20] ZHANG Hai-Feng(张海峰), LIU Kai-Yu(刘开宇), SUN Zhe (孙哲), et al. Chinese Battery Ind.(电池工业), 2012,17(2): 85-88
-
[21]
[21] Hu Y Q, Doeff M M, Kostecki R, et al. J. Electrochem. Soc., 2004,151(8):A1279-A1285
-
[22]
[22] Lim J, Gim J, Kang S W, et al. J. Electrochem. Soc., 2012, 159(4):A479-A484
-
[23]
[23] Yang H, Wu X L, Cao M H, et al. J. Phys. Chem. C, 2009, 113(8):3345-3351
-
[24]
[24] Saravanan K, Reddy M V, Balaya P, et al. J. Mater. Chem., 2009,19(5):605-610
-
[25]
[25] Li L X, Tang X C, Liu H T, et al. Electrochim. Acta, 2010, 56(2):995-999
-
[26]
[26] Doeff M M, Wilcox J D, Kostecki R, et al. J. Power Sources, 2006,163(1):180-184
-
[27]
[27] Wang Y G, Wang Y R, Hosono E, et al. Angew. Chem., 2008, 120(39):7571-7575
-
[28]
[28] Kang W P, Zhao C H, Liu R, et al. CrystEngComm, 2012, 14(6):2245-2250
-
[29]
[29] Qin X, Wang J M, Xie J, et al. Phys. Chem. Chem. Phys, 2012,14(8):2669-2677
-
[30]
[30] HANG Fu-Qin(黄富勤), TANG Xin-Cun(唐新村), XIAO Yuan-Hua(肖元化), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(2):235-241
-
[31]
[31] CHANG Ling(常玲), WANG Feng-Xian(王凤先), DU Gao-Hui(杜高辉), et al. Chinese J. Power Sources(电源技术), 2013,37(10):1733-1735
-
[32]
[32] Zhou N, Uchaker E, Wang H Y, et al. RSC Adv., 2013,3(42):19366-19374
-
[33]
[33] Yang S L, Hu M J, Xi L J, et al. ACS Appl. Mater. Interfaces, 2013,5(18):8961-8967
-
[1]
-
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[5]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[6]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[7]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[9]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[10]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[11]
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
-
[12]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[13]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[14]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[15]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[16]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[17]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[18]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[19]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[20]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(418)
- HTML views(57)