Citation: WANG Peng, CHEN Shang-Xing, HUANG Min, ZHAO Zhen-Dong, WANG Zong-De, FAN Guo-Rong. Synthesis of Ordered Supermicroporous Silica Using Rosin-Based Quaternary Ammonium Salt[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 767-773. doi: 10.11862/CJIC.2015.105 shu

Synthesis of Ordered Supermicroporous Silica Using Rosin-Based Quaternary Ammonium Salt

  • Corresponding author: CHEN Shang-Xing, 
  • Received Date: 5 November 2014
    Available Online: 12 January 2015

    Fund Project: 教育部博士学科点专项科研基金课题(No.20133603120002)资助项目。 (No.20133603120002)

  • Ordered hexagonal supermicroporous silica with nanosheet morphology was successfully synthesized using rosin-based quaternary ammonium salt (dehydroabietyltrimethyl ammonium bromine, short for DTAB) as template agent, tetraethyl orthosilicate as silicate source, and ammonia as alkaline medium. XRD, N2 adsorption-desorption, TEM, and SEM were used to characterize the samples. The results indicated that the dosage amount of template agent, silicate source, alkaline medium, crystallization temperature and stirring time had great effects on the regularity of the pore structure. When the mole ratio of nSiO2:nDTAB:nNH3:nH2O was 1.0:0.1:11.3:924.0; crystallization temperature was 373 K; stirring time was 24 h, the sample got the hightest regularity. After the calcination, the synthesized material possessed large surface area (1 024 m2·g-1), high pore volume (0.56 cm3·g-1) and narrow pore size distribution (centered at about 1.80 nm).
  • 加载中
    1. [1]

      [1] Corma A. Chem. Rev., 1997,97(6):2373-2420

    2. [2]

      [2] Charnay C, Bégu S, Tourné-Péteilh C, et al. Eur. J. Pharm. Biopharm., 2004,57(3):533-540

    3. [3]

      [3] Fan J, Yu C, Gao F, et al. Angew. Chem., 2003,115(27): 3254-3258

    4. [4]

      [4] Crossland E J, Noel N, Sivaram V, et al. Nature, 2013,495(7440):215-219

    5. [5]

      [5] Kresge C, Leonowicz M, Roth W, et al. Nature, 1992,359(6397):710-712

    6. [6]

      [6] Beck J, Vartuli J, Roth W, et al. J. Am. Chem. Soc., 1992, 114(27):10834-10843.

    7. [7]

      [7] Huo Q, Margolese D I, Stucky G D. Chem. Mater., 1996,8(5):1147-1160

    8. [8]

      [8] Yu C, Tian B, Fan J, et al. J. Am. Chem. Soc., 2002,124(17):4556-4557

    9. [9]

      [9] Zhao D, Feng J, Huo Q, et al. Science, 1998,279(5350):548-552

    10. [10]

      [10] Tanev P T,Pinnavaia T J. Science, 1995,267(5199):865-867

    11. [11]

      [11] Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995,269(5228):1242-1244

    12. [12]

      [12] Yu C, Yu Y, Zhao D. Chem. Commun., 2000(7):575-576

    13. [13]

      [13] Liu X, Tian B, Yu C, et al. Angew. Chem. Int. Ed., 2002,41(20):3876-3878

    14. [14]

      [14] Fan J, Yu C, Wang L, et al. J. Am. Chem. Soc., 2001,123(48):12113-12114

    15. [15]

      [15] Zhou G, Chen Y, Yang J, et al. J. Mater. Chem., 2007,17(27):2839-2844

    16. [16]

      [16] Bagshaw S, Hayman A. Adv. Mater., 2001,13(12/13):1011-1013

    17. [17]

      [17] Davis M E. Nature, 2002,417(6891):813-821

    18. [18]

      [18] Zhao S X, Lu G Q M, Hu X. Chem. Commun., 1999(15): 1391-1392

    19. [19]

      [19] Serrano D P, Aguado J, Garagorri E. Chem. Commun., 2000(20):2041-2042

    20. [20]

      [20] Kruk M, Jaroniec M, Sayari A. J. Phys. Chem. B, 1997,101(4):583-589

    21. [21]

      [21] Beck J, Vartuli J, Kennedy G, et al. Chem. Mater., 1994,6(10):1816-1821

    22. [22]

      [22] Bagshaw S A, Hayman A R. Microporous Mesoporous Mater., 2001,44:81-88

    23. [23]

      [23] Ryoo R, Park I S, Jun S, et al. J. Am. Chem. Soc., 2001,123(8):1650-1657

    24. [24]

      [24] Wang R, Han S, Hou W, et al. J. Phys. Chem. C, 2007,111(29):10955-10958

    25. [25]

      [25] Zhou Y, Antonietti M. Adv. Mater., 2003,15(17):1452-1455

    26. [26]

      [26] Zhou Y, Antonietti M. Chem. Mater., 2004,16(3):544-550

    27. [27]

      [27] Di Y, Meng X, Wang L, et al. Langmuir, 2006,22(7):3068-3072

    28. [28]

      [28] ZENG Tao(曾韬), PENG Shu-Jing(彭淑静). J. Nanjing For. Univ.: Nat. Sci. Ed.(南京林业大学学报:自然科学版), 1996(01):26-28

    29. [29]

      [29] CHEN Xiao-Yin(陈晓银), DING Guo-Zhong(丁国忠), CHEN Hai-Ying(陈海鹰), et al. Chem. J. Chinese Universities(高等学校化学学报), 1997(02):186-189

    30. [30]

      [30] Brunauer S, Deming L S, Deming W E, et al. J. Am. Chem. Soc., 1940,62(7):1723-1732

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(547)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return