Citation: LI Ai-Chang, ZHU Ning-Ning, LI Jing-Hong, YANG Xiao-Yan, WANG Shuang, YANG Liu. Preparation of Ag3PO4/Ni Thin Films and Their Photocatalytic Activity and Reaction Mechanism for Rhodamine B[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 681-688. doi: 10.11862/CJIC.2015.094 shu

Preparation of Ag3PO4/Ni Thin Films and Their Photocatalytic Activity and Reaction Mechanism for Rhodamine B

  • Corresponding author: LI Ai-Chang, 
  • Received Date: 18 September 2014
    Available Online: 29 December 2014

    Fund Project: 河北省科技支撑计划项目(No.11276732) (No.11276732)廊坊师范学院重点科学研究项目(No.LSZZ201303)资助。 (No.LSZZ201303)

  • Ag3PO4/Ni thin films were prepared by electrochemical method. The surface morphology, phase structure, optical characteristics and band structure of the thin film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. Its photocatalytic properties and stability were evaluated with Rhodamine B (RhB) as a model compound. Using a method of adding active species scavenger to the solution, mechanism of photocatalytic degradation of the film was explored. The results show that the Ag3PO4/Ni thin film prepared under optimum condition has a compact layer structure composed by polymouphous nanoparticles. The thin film exhibits high photocatalytic activity and excellent photocatalytic stability to decompose Rhodamine B. The photodegradation rate is about 2.3 times that of porous P25 TiO2/ITO nanofilm under the visible light in 60 min. The film maintains nearly 100% of their corresponding initial photocatalytic activity after 6 cycles. Furthermore, the photodegradation mechanism of the film for Rhodamine B under the visible light was proposed.
  • 加载中
    1. [1]

      [1] Antoniadou M, Lianos P. Catal. Today, 2009,144:166-171

    2. [2]

      [2] Szabo-Bardos E, Zsilak Z, Horvath O. Prog. Colloid Polym. Sci., 2008,135:21-28

    3. [3]

      [3] María José L M, Rafael V G, José A. Catal. Today, 2005, 101:307-314

    4. [4]

      [4] XU Yi-Ming(许宜铭). Prog. Chem.(化学进展), 2009,21(2/3): 524

    5. [5]

      [5] Zou Z, Ye J, Sayama K, et al. Nature, 200l,414(6864):625-627

    6. [6]

      [6] LU Fei(鲁飞), MENG, Fan-Ming(盂凡明). Bull. Chin. Ceram. Soc. (硅酸盐通报), 2011,30:116-119

    7. [7]

      [7] YAN Shi-Cheng(闫世成), LUO Wen-Jun(罗文俊), LI Chao-Sheng(李朝升), et al. Mater. China(中国材料进展), 2010, 29(1):1-9

    8. [8]

      [8] Yi Z G, Ye J H, Kikugawa N, et al. Nat. Mater., 2010,9(7): 559-564

    9. [9]

      [9] Bi Y P, Hu H Y, Ye J H. et al. Chem. Commun., 2012,48(31):3748-3750

    10. [10]

      [10] Bi Y P, Hu H Y, Ye J H, et al. Mater. Chem., 2012,22(30): 14847-14850

    11. [11]

      [11] Bi Y P, Ouyang S, Ye J H, et al. J. Am. Chem. Soc., 2011,133(17):6490-6492

    12. [12]

      [12] Bi Y P, Ouyang S, Ye J H, et al. Phys. Chem. Chem. Phys., 2011,13(21):10071-10075

    13. [13]

      [13] Ge M, Zhu N, Zhao Y P, et al. Ind. Eng. Chem. Res., 2012,51(14):5167-5173

    14. [14]

      [14] Wang H, Bai Y S, Yang J T, et al. Chem. Eur. J., 2012,18(18):5524-5529

    15. [15]

      [15] Wang W G, Cheng B, Yu J G, et al. Chem. Asian J., 2012,7(8):1902-1908

    16. [16]

      [16] Liang Q H, Ma W J, Yang X M, et al. CrystEngComm, 2012,14(8):2966-2973

    17. [17]

      [17] Khan A, Qamar M, Muneer M. Chem. Phys. Lett., 2012,20(25):54-58

    18. [18]

      [18] Cao J, Luo B D, Lin H L, et al. J. Hazard Mater., 2012,4(1): 107-115

    19. [19]

      [19] Zhang L L, Zhang H C, Liu Y, et al. New J. Chem., 2012,36(8):1541-1544

    20. [20]

      [20] Dinh C T, Nguyen T D, Kleitz F, et al. Chem. Commun., 2011,47(32):7797-7799

    21. [21]

      [21] Umezawa N, Ouyang S, Ye J. Phys. Rev.: B, 2011,83(3): 035202-1-035202-6.

    22. [22]

      [22] Esquivel K, Arriaga LG, Rodriguez F J, et al. Water Res., 2009,43:3593-3603

    23. [23]

      [23] YANG Yong-Biao(杨勇彪), ZHANG Zheng-Fu(张正富), CHEN Qing-Hua(陈庆华), et al. Yunnan Metallurge(云南冶金), 2004,33(4): 20-22

    24. [24]

      [24] LI Ai-Chang(李爱昌), LU Yan-Hong(卢艳红), CHEN Rong-Ying(陈荣英), et al. J. Chin. Ceram. Soc.(硅酸盐学报), 2014,42(6):808-815

    25. [25]

      [25] GUO He-Tong(郭鹤桐), LIU Shu-Lan(刘淑兰). Theoretical Electrochemistry(理论电化学). Beijing: China Astronautic Publishing Press, 1984:240,67

    26. [26]

      [26] FAN Xong(范雄). Metal X-ray Diffractometry(金属X射线衍射学). Beijing: China Machine Press, 1996:45

    27. [27]

      [27] WANG Yun-Fang(王韵芳), FAN Cai-Mei(樊彩梅). Chinese J. Inorg. Chem.(无机化学学报), 2012,28(2):347-351

    28. [28]

      [28] Liu J J, Fu X L, Chen S F, et al. Appl. Phys. Lett., 2011,99: 191903(1-3)

    29. [29]

      [29] LIU Jian-Xin(刘建新), WANG Yun-Fang(王韵芳), WANG Ya-Wen(王雅文), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(4):729-737

    30. [30]

      [30] WU Hao-Qing(吴浩青), LI Yong-Fang(李永舫). Electrochemical Kinetics(电化学动力学). Beijing: Higher Education Press, 1998:178

    31. [31]

      [31] XU Xiu-Quan(徐秀泉), YU Xiao-Feng(于小凤), TANG Yan (唐燕), et al. J. Chin. Ceram. Soc.(硅酸盐学报), 2012,40(12):1796-1801

    32. [32]

      [32] Wang B, Gu X Q. Key Eng. Mater., 2014,609:335-340

    33. [33]

      [33] LI Ai-Chang(李爱昌),LI Gui-Hua(李桂花), ZHENG Yan (郑琰), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2012, 28(2):457-464

    34. [34]

      [34] LI Ai-Chang(李爱昌), LI Jian-Fei(李健飞), LIU Ya-Lu (刘亚录), et al. Acta Chim. Sinica (化学学报), 2013,71(5): 815-821

    35. [35]

      [35] YANG Juan(杨娟), DAI Jun(戴俊), ZHAO Jin-Cai(赵进才), et al. Chin. Sci. Bull.(科学通报), 2009,54(15):2196-2204

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return