Citation: JING Xu, YANG Lin-Lin, CHANG Zhi-Duo, HE Cheng, DUAN Chun-Ying. Photocatalytic Hydrogen Production from Water Using Cobalt-Thiosemicarbazone Complex as Redox Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 975-980. doi: 10.11862/CJIC.2015.090 shu

Photocatalytic Hydrogen Production from Water Using Cobalt-Thiosemicarbazone Complex as Redox Catalyst

  • Corresponding author: DUAN Chun-Ying, 
  • Received Date: 30 October 2014
    Available Online: 3 February 2015

    Fund Project: 国家自然科学基金(No.21471075) (No.21471075)973项目(No.2011CB808704)资助。 (No.2011CB808704)

  • By incorporating a phosphine donor within a thiosemicarbazone moiety to enhance the coordinated ability of the chelators, a cobalt complex Co-NSP (HNSP: 4-[2-(2-diphenylphosphino-benzylidene) thiosemicar-bohydrazone]benzenesulfonate) was obtained as the proton reduction catalyst for light driven H2 evolution in homogeneous environment with fluorescein as the photosensitizer. The presence of NSP tridentate chelator benefits the formation of low oxidized species to increase the catalytic efficiency, and the incorporation of a sulfonate group enhances the water solubility of the catalyst. The amount of H2 generation in 12 h photolysis maximizes in the presence of sacrificial reagent NEt3 at pHvalue of 11.0. The initial TOF (turnover frequency) is about 200 mol H2 per mole catalyst per hour with the turnover number (TON) about 2000 mol H2 per mole of catalyst.
  • 加载中
    1. [1]

      [1] Cook T R, Dogutan D K, Reece S Y, et al. Chem. Rev., 2010,110:6474-6502

    2. [2]

      [2] Bard A J, Fox M A. Acc. Chem. Res., 1995,28:141-145

    3. [3]

      [3] Chen X, Liu L, Yu P Y, et al. Science, 2011,331:746-750

    4. [4]

      [4] Dismukes C R, Brimblecombe G A, Felton N, et al. Acc. Chem. Res., 2009,42:1935-1943

    5. [5]

      [5] Richardson R D, Holland E J, Carpenter B K. Nat. Chem., 2011,3:301-303

    6. [6]

      [6] Zhang W, Hong J H, Zheng J W, et al. J. Am. Chem. Soc., 2011,133:20680-20683

    7. [7]

      [7] Lobana T S, Sharma R, Bawa G, et al. Coord. Chem. Rev., 2009,253:977-1055

    8. [8]

      [8] Milunovic M N M, Enyedy E A, Nagy N V, et al. Inorg. Chem., 2012,51:9309-9321

    9. [9]

      [9] Ali M A, Bernhardt P V, Brax M A, et al. Inorg. Chem., 2013,52:1650-1657

    10. [10]

      [10] Han Z J, Shen L X, Brennessel W W, et al. J. Am. Chem. Soc., 2013,135:14659-14669

    11. [11]

      [11] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem, Int. Ed., 2011,50:7238-7266

    12. [12]

      [12] Du P W, Eisenberg R. Energy Environ. Sci., 2012,5:6012-6021

    13. [13]

      [13] Razavet M, Artero V, Fontecave M. Inorg. Chem., 2005,44: 4786-4795

    14. [14]

      [14] SMART and SAINT, Area Detector Control and Integration Software, Siemens Analytical X-ray Systems, Inc.: Madison, WI, 1996.

    15. [15]

      [15] Sheldrick G M. SHELXTL V5.1, Software Reference Manual, Bruker, AXS, Inc.: Madison, WI, 1997.

    16. [16]

      [16] Li M X, Chen C L, Zhang D, et al. Eur. J. Med. Chem., 2010,45:3169-3177

    17. [17]

      [17] Katti K V, Singh P R, Barnes C L. Dalton Trans., 1993:2153-2159

    18. [18]

      [18] Stewart M P, Ho M H, Wiese S, et al. J. Am. Chem. Soc., 2013,135:6033-6046

    19. [19]

      [19] Kasunadasa H I, Chang C J, Long J R. Nature, 2010,464: 1329-1333

    20. [20]

      [20] Lazarides T, McCormick T, Du P W, et al. J. Am. Chem. Soc., 2009,131:9192-9194

    21. [21]

      [21] Zhang P, Wang M, Na Y, et al. Dalton Trans., 2010,39: 1204-1206

    22. [22]

      [22] McNamara W R, Han Z, Alperin P J, et al. J. Am. Chem. Soc., 2011,133:15368-15371

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    8. [8]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    18. [18]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return