Citation: JING Xu, YANG Lin-Lin, CHANG Zhi-Duo, HE Cheng, DUAN Chun-Ying. Photocatalytic Hydrogen Production from Water Using Cobalt-Thiosemicarbazone Complex as Redox Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 975-980. doi: 10.11862/CJIC.2015.090 shu

Photocatalytic Hydrogen Production from Water Using Cobalt-Thiosemicarbazone Complex as Redox Catalyst

  • Corresponding author: DUAN Chun-Ying, 
  • Received Date: 30 October 2014
    Available Online: 3 February 2015

    Fund Project: 国家自然科学基金(No.21471075) (No.21471075)973项目(No.2011CB808704)资助。 (No.2011CB808704)

  • By incorporating a phosphine donor within a thiosemicarbazone moiety to enhance the coordinated ability of the chelators, a cobalt complex Co-NSP (HNSP: 4-[2-(2-diphenylphosphino-benzylidene) thiosemicar-bohydrazone]benzenesulfonate) was obtained as the proton reduction catalyst for light driven H2 evolution in homogeneous environment with fluorescein as the photosensitizer. The presence of NSP tridentate chelator benefits the formation of low oxidized species to increase the catalytic efficiency, and the incorporation of a sulfonate group enhances the water solubility of the catalyst. The amount of H2 generation in 12 h photolysis maximizes in the presence of sacrificial reagent NEt3 at pHvalue of 11.0. The initial TOF (turnover frequency) is about 200 mol H2 per mole catalyst per hour with the turnover number (TON) about 2000 mol H2 per mole of catalyst.
  • 加载中
    1. [1]

      [1] Cook T R, Dogutan D K, Reece S Y, et al. Chem. Rev., 2010,110:6474-6502

    2. [2]

      [2] Bard A J, Fox M A. Acc. Chem. Res., 1995,28:141-145

    3. [3]

      [3] Chen X, Liu L, Yu P Y, et al. Science, 2011,331:746-750

    4. [4]

      [4] Dismukes C R, Brimblecombe G A, Felton N, et al. Acc. Chem. Res., 2009,42:1935-1943

    5. [5]

      [5] Richardson R D, Holland E J, Carpenter B K. Nat. Chem., 2011,3:301-303

    6. [6]

      [6] Zhang W, Hong J H, Zheng J W, et al. J. Am. Chem. Soc., 2011,133:20680-20683

    7. [7]

      [7] Lobana T S, Sharma R, Bawa G, et al. Coord. Chem. Rev., 2009,253:977-1055

    8. [8]

      [8] Milunovic M N M, Enyedy E A, Nagy N V, et al. Inorg. Chem., 2012,51:9309-9321

    9. [9]

      [9] Ali M A, Bernhardt P V, Brax M A, et al. Inorg. Chem., 2013,52:1650-1657

    10. [10]

      [10] Han Z J, Shen L X, Brennessel W W, et al. J. Am. Chem. Soc., 2013,135:14659-14669

    11. [11]

      [11] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem, Int. Ed., 2011,50:7238-7266

    12. [12]

      [12] Du P W, Eisenberg R. Energy Environ. Sci., 2012,5:6012-6021

    13. [13]

      [13] Razavet M, Artero V, Fontecave M. Inorg. Chem., 2005,44: 4786-4795

    14. [14]

      [14] SMART and SAINT, Area Detector Control and Integration Software, Siemens Analytical X-ray Systems, Inc.: Madison, WI, 1996.

    15. [15]

      [15] Sheldrick G M. SHELXTL V5.1, Software Reference Manual, Bruker, AXS, Inc.: Madison, WI, 1997.

    16. [16]

      [16] Li M X, Chen C L, Zhang D, et al. Eur. J. Med. Chem., 2010,45:3169-3177

    17. [17]

      [17] Katti K V, Singh P R, Barnes C L. Dalton Trans., 1993:2153-2159

    18. [18]

      [18] Stewart M P, Ho M H, Wiese S, et al. J. Am. Chem. Soc., 2013,135:6033-6046

    19. [19]

      [19] Kasunadasa H I, Chang C J, Long J R. Nature, 2010,464: 1329-1333

    20. [20]

      [20] Lazarides T, McCormick T, Du P W, et al. J. Am. Chem. Soc., 2009,131:9192-9194

    21. [21]

      [21] Zhang P, Wang M, Na Y, et al. Dalton Trans., 2010,39: 1204-1206

    22. [22]

      [22] McNamara W R, Han Z, Alperin P J, et al. J. Am. Chem. Soc., 2011,133:15368-15371

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(0)
  • Abstract views(246)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return