Citation: GUAN Ming-Yun, JIAN Yan, SUN Jian-Hua, XU Zheng. Flower-Like Mesocrystal Cobalt: Controllable Synthesis in Large Scale and Magnetic Property[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 619-626. doi: 10.11862/CJIC.2015.084 shu

Flower-Like Mesocrystal Cobalt: Controllable Synthesis in Large Scale and Magnetic Property

  • Received Date: 3 November 2014
    Available Online: 23 December 2014

    Fund Project: 国家973重点建设项目基础研究项目(No.2007CB936302) (No.2007CB936302) 国家自然科学基金-面上项目(No.21373103) (No.21373103) 江苏省自然科学基金-面上项目 (No.BK2011260)资助项目。 (No.BK2011260)

  • Using diethylenetriamine (DETA) as coordination agent, a well-defined flower-like cobalt mesocrystal was synthesized rapidly by nanoparticles self assembly in oriented fashion. By adjusting reaction rate and kind of coordination agents, morphologies of cobalt can be transformed from nice-look flower, via poor-look dendrite, to microsphere composed of nanoparticles or nanoplates. DETA plays an important role in the formation process of cobalt mesocrystal. The possible formation mechanism is proposed. The cobalt mesocrystals not only exhibit Co nanocrystals property (an enhanced coercive force being 260 Oe at 300 K), but also have bulk Co property (saturation magnetization being 168 emu·g-1). The synthesis method in large scale is facile and effective with high yield.
  • 加载中
    1. [1]

      [1] Ma M G, Cölfen H. Curr. Opin. Colliod Interface Sci., 2014, 19:56-65

    2. [2]

      [2] Cölfen H, Antonietti M. Angew. Chem. Int. Ed., 2005,44: 5576-5591

    3. [3]

      [3] Meldrum F C, Cölfen H. Chem. Rev., 2008,108:4332-4432

    4. [4]

      [4] Zhou L, O'Brien P. Small, 2008,4:1566-1574

    5. [5]

      [5] Zhou L, Smyth-Boyle D, O'Brien P. J. Am. Chem. Soc., 2008, 130:1309-1320

    6. [6]

      [6] Li T, You H J, Xu M W, et al. Appl. Mater. Interfaces, 2012, 4:6942-6948

    7. [7]

      [7] (a)Oaki Y, Imai H. Small, 2006,2:66-70

    8. [8]

      (b)Popovic J, Cakan R D, Tornow J, et al. Small, 2011,7:1127-1135

    9. [9]

      [8] Yao R M, Cao C B, Bai J. CrystEngComm, 2013,15:3279-3283

    10. [10]

      [9] Ye J F, Liu W, Cai J G, et al. J. Am. Chem. Soc., 2011,133: 933-940

    11. [11]

      [10] Mo M S, Lim S H, Mai Y W, et al. Adv. Mater., 2008,20: 339-342

    12. [12]

      [11] (a)Li Z H, Gener André, Richters J P, et al. Adv. Mater., 2008,20:1279-1285

    13. [13]

      (b)Wang S S, Xu A W. CrystEngComm, 2013,15:376-381

    14. [14]

      (c)Liu Z, Wen X D, Wu X L, et al. J. Am. Chem. Soc., 2009, 131:9405-9412

    15. [15]

      [12] Zhou N, Uchaker E, Wang H Y, et al. RSC Adv., 2013,3: 19366-19374

    16. [16]

      [13] Sun J X, Chen G, Pei J, et al. J. Mater. Chem., 2012,22: 5609-5614

    17. [17]

      [14] (a)Tachikawa T, Zhang P, Bian Z F, et al. J. Mater. Chem. A, 2014,2:3381-3388

    18. [18]

      (b)Thachepan S, Li M, Mann S. Nanoscale, 2010,2:2400-2405

    19. [19]

      [15] Jongen N, Bowen P, Lemaitre J, et al. J. Colloid Interface Sci., 2000,226:189-198

    20. [20]

      [16] Johannes I, Bots P, Kulak A, et al. Adv. Funct. Mater., 2013,23:1965-1973

    21. [21]

      [17] Yuwono V M, Burrows N D, Soltis J A, et al. J. Am. Chem. Soc., 2010,132:2163-2165

    22. [22]

      [18] Zhou Y, Wang X Y, Wang H, et al. Dalton Trans., 2014,43: 4711-4719

    23. [23]

      [19] Dang F, Hoshino T, Oaki Y Y, et al. Nanoscale, 2013,5: 2352-2357

    24. [24]

      [20] Song R Q, Xu A W, Antonietti M, et al. Angew. Chem. Int. Ed., 2009,48:395-399

    25. [25]

      [21] Liu Y Q, Kumar A, Fan Z, et al. Appl. Phys. Lett., 2013, 102:232903(1-5)

    26. [26]

      [22] (a)Fang J X, Ding B J, Song X P. Appl. Phys. Let., 2007,91: 083108(1-3)

    27. [27]

      (b)Fang J X, Ding B J, Song X P, et al. Appl. Phys. Lett., 2008,92:173120(1-3)

    28. [28]

      (c)Fang J X, Ding B J, Song X P. Cryst. Grow. Des., 2008,8: 3617-3622

    29. [29]

      [23] Fang Z, Long L Y, Hao S H, et al. CrystEngComm, 2014, 16:2061-2069

    30. [30]

      [24] (a)Guo X H, Yu S H. Cryst. Grow. Des., 2007,7:354-359

    31. [31]

      (b)Guan M Y, Zhu G X, Shang T M, et al. CrystEngComm, 2012,14,6540-6547

    32. [32]

      [25] (a)Wang M S, Zhang Y P, Zhou Y J, et al. CrystEngComm, 2013,15:754-763

    33. [33]

      (b)Park N H, Wang Y F, Seo W S, et al. CrystEngComm, 2013,15:679-685

    34. [34]

      [26] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291:2115-2117

    35. [35]

      [27] Xiemuxiding Abula(谢木西丁·阿布拉), Beysen Sadeh(拜 山·沙德克), Mutila Aman(木提拉·阿曼), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(7):1403-1408

    36. [36]

      [28] HE Wen-Qi(贺文启), XIAO Yong(肖勇), CHENG Jia-Liang (成嘉亮), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(9):1685-1689

    37. [37]

      [29] An K, Lee N, Park J, et al. J. Am. Chem. Soc., 2006,128: 9753-9760

    38. [38]

      [30] YANG Pei-Xia(杨培霞), AN Mao-Zhong(安茂忠), SU Cai-Na(苏彩娜), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(9):1501-1504

    39. [39]

      [31] Liu X, Yi R, Wang Y, et al. J. Phys. Chem. C, 2007,111: 163-167

    40. [40]

      [32] Zhu L P, Xiao H M, Zhang W D, et al. Cryst. Growth Des., 2008,8:1113-1118

    41. [41]

      [33] Cao M H, Liu T F, Gao S, et al. Angew. Chem. Int. Ed., 2005,44:4197-4201

    42. [42]

      [34] Bao J C, Tie C Y, Xu Z, et al. Adv. Mater., 2002,14:44-47

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    7. [7]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    17. [17]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return