Citation:
JI Lei, WANG Hao-Ren, YU Rui-Min, JIANG Zhen, WANG Huai-Yuan. Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities[J]. Chinese Journal of Inorganic Chemistry,
;2015, (3): 521-528.
doi:
10.11862/CJIC.2015.080
-
BiOI/NaBiO3 heterostructure photocatalysts were synthesized using HI as etching agents to react with NaBiO3 by a heating condensate reflux method according to surface chemical etching principle. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectra (UV-Vis DRS) were employed to study the phase structures, morphologies and optical properties of the as-prepared samples respectively. From the degradation of Rhodamine B(RhB) under visible light irradiation experimental results, we can obtained that the absorption capacity of as-prepared samples were enhanced with increasing the BiOI amounts in the BiOI/NaBiO3 heterostructures until the BiOI/NaBiO3 ratio is 79.62%. With increasing BiOI content, the photocatalytic activity enhanced gradually and then decreased. As the BiOI content increase to 17.34%, the highest photocatalytic activity could be achieved, and the RhB almost faded completely with the time increasing to 100 min. The results show that the adsorption ability is only a factor not all to promote the photocatalytic ability. The EVB of NaBiO3 and BiOI were calculated to be 2.23 and 2.41 eV and the ECB of NaBiO3 and BiOI were -0.23 and 0.46 eV by the UV-Vis DRS method respectively. To evaluate the roles of reactive species during photocatalysis, different scavengers including benzoquinone, isopropyl alcohol and methanol were adopted as the traps for O2-, OH and h+ for RhB degradation. The results suggesting that h+ played major role for RhB degradation. Terephthalic acid photoluminescence (TA-PL) probing test demonstrated that OH could be negligible also. According to the band gap structure of BiOI/NaBiO3, the effects of scavengers and the PL experimental results, a possible charge separation processes between BiOI and NaBiO3, and the pathway for the photocatalytic activity enhancement mechanism was proposed. The heterojunction at the interface between p-BiOI and n-NaBiO3 can efficiently reduce the recombination of photogenerated electron-hole pairs and which accounts for the enhancement of photocatalytic activity. Form the analysis of potential, it is theoretically reasonable that the photocatalytic degradation of RhB could be attributed to the reaction of hole directly rather than OH and O2- radicals.
-
-
-
[1]
[1] Fujishima A, Honda K. Nature, 1972,238:37-38
-
[2]
[2] Carey J H, Lawrenee J, Tosin H M. Bull. Environ. Contam. Toxicol., 1976,16:697-701
-
[3]
[3] Frank S N, Bard A J. J. Am. Chem. Soc., 1977,99:4667-4675
-
[4]
[4] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010,44:5570 -5574
-
[5]
[5] Liu Y F, Zhu Y Y, Xu J, et al. Appl. Catal. B: Environ., 2014,142-143:561-567
-
[6]
[6] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009,182: 223-228
-
[7]
[7] Zhang L S, Wang H L, Chen Z G, et al. Appl. Catal. B: Environ., 2011,106(1/2):1-13
-
[8]
[8] Huang Y, Ai Z H, Ho W K, et al. J. Phys. Chem. C, 2010, 114(21):6342-6349
-
[9]
[9] Wang C Y, Zhang H, Li F, et al. Environ. Sci. Technol., 2010,44(17):6843-6848
-
[10]
[10] Chen F, Liu H L. J. Photochem. Photobiol., A, 2010,215(1): 76-80
-
[11]
[11] LI Er-Jun (李二军), CHEN Lang (陈浪), ZHANG Qiang (章强), et al. Progress in Chemistry (化学进展), 2010,22 (12):2282-2289
-
[12]
[12] WU Zi-Wei (吴子伟), LÜ Xiao-Meng (吕晓萌), SHEN Jia-Yu (沈佳宇), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(3):492-498
-
[13]
[13] Kou J, Zhang H, Li Z. Catal. Lett., 2008,122:131-137
-
[14]
[14] Chang X F, Ji G, Sui Q. J. Hazard. Mater., 2009,166(2):728 -733
-
[15]
[15] Kako T, Zou Z G. Chem. Mater., 2007,19(2):198-202
-
[16]
[16] Xia J, Yin S, Li H, et al. Langmuir, 2010,27:1200-1206
-
[17]
[17] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008,112:747-753
-
[18]
[18] GUI Ming-Sheng (桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2013,29(10):2057-2064
-
[19]
[19] YU Hong-Tao(于洪涛), QUAN Xie(全燮). Progress in Chemistry (化学进展). 2009,21:406-419
-
[20]
[20] Wang H L, Zhang L S, Chen Z G, et al. Chem. Soc. Rev., 2014,43:6765-6813
-
[21]
[21] Jiang J, Zhang X, Sun P B. J. Phys. Chem. C, 2011,115: 20555-20564
-
[22]
[22] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264: 581-588
-
[23]
[23] CUI Yu-Min (崔玉民), HONG Wen-Shan (洪文珊), LI Hui-Quan (李慧泉), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(2):431-441
-
[24]
[24] Di J, Xia J, Yin S. J. Mater. Chem., 2014,2:5340-5343
-
[25]
[25] Cao J, Xu B, Lin H. Chem. Eng. J., 2013,228:482-488
-
[26]
[26] Dong F, Sun Y, Fu M. J. Hazard. Mater., 2012,219:26-34
-
[27]
[27] Nethercot A H. Phys. Rev. Lett., 1974,33:1088-1091
-
[28]
[28] The absolute electronegativity of the atoms were referred from www.knowledgedoor.com
-
[29]
[29] Nasr C, Vinodgopal K, Fisher L, et al. J. Phys. Chem., 1996,100:8436-8442
-
[30]
[30] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20:1493-1498
-
[31]
[31] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43:8361-8366
-
[32]
[32] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76:1185-1191
-
[33]
[33] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44:1392-1398
-
[34]
[34] YU Li-Sheng(虞丽生). Physics of Semiconductor Heterojunction. 2nd Ed.(半导体异质结物理.2版). Beijing: Science Press, 2006.
-
[1]
-
-
-
[1]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[2]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[3]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[5]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[6]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[7]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[8]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[9]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[10]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[11]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
-
[12]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
-
[13]
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
-
[14]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[15]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[16]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[17]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[18]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[19]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[20]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(273)
- HTML views(15)