Citation: JI Lei, WANG Hao-Ren, YU Rui-Min, JIANG Zhen, WANG Huai-Yuan. Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 521-528. doi: 10.11862/CJIC.2015.080 shu

Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities

  • Received Date: 30 September 2014
    Available Online: 24 November 2014

    Fund Project: 黑龙江省普通高等学校青年学术骨干支持计划(No.1251G002) (No.1251G002)东北石油大学青年科学基金(No.2012QN114) (No.2012QN114)黑龙江省普通高校石油与 天然气化工重点实验室开放基金(No.HXHG2012-0)资助项目。 (No.HXHG2012-0)

  • BiOI/NaBiO3 heterostructure photocatalysts were synthesized using HI as etching agents to react with NaBiO3 by a heating condensate reflux method according to surface chemical etching principle. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectra (UV-Vis DRS) were employed to study the phase structures, morphologies and optical properties of the as-prepared samples respectively. From the degradation of Rhodamine B(RhB) under visible light irradiation experimental results, we can obtained that the absorption capacity of as-prepared samples were enhanced with increasing the BiOI amounts in the BiOI/NaBiO3 heterostructures until the BiOI/NaBiO3 ratio is 79.62%. With increasing BiOI content, the photocatalytic activity enhanced gradually and then decreased. As the BiOI content increase to 17.34%, the highest photocatalytic activity could be achieved, and the RhB almost faded completely with the time increasing to 100 min. The results show that the adsorption ability is only a factor not all to promote the photocatalytic ability. The EVB of NaBiO3 and BiOI were calculated to be 2.23 and 2.41 eV and the ECB of NaBiO3 and BiOI were -0.23 and 0.46 eV by the UV-Vis DRS method respectively. To evaluate the roles of reactive species during photocatalysis, different scavengers including benzoquinone, isopropyl alcohol and methanol were adopted as the traps for O2-, OH and h+ for RhB degradation. The results suggesting that h+ played major role for RhB degradation. Terephthalic acid photoluminescence (TA-PL) probing test demonstrated that OH could be negligible also. According to the band gap structure of BiOI/NaBiO3, the effects of scavengers and the PL experimental results, a possible charge separation processes between BiOI and NaBiO3, and the pathway for the photocatalytic activity enhancement mechanism was proposed. The heterojunction at the interface between p-BiOI and n-NaBiO3 can efficiently reduce the recombination of photogenerated electron-hole pairs and which accounts for the enhancement of photocatalytic activity. Form the analysis of potential, it is theoretically reasonable that the photocatalytic degradation of RhB could be attributed to the reaction of hole directly rather than OH and O2- radicals.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Carey J H, Lawrenee J, Tosin H M. Bull. Environ. Contam. Toxicol., 1976,16:697-701

    3. [3]

      [3] Frank S N, Bard A J. J. Am. Chem. Soc., 1977,99:4667-4675

    4. [4]

      [4] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010,44:5570 -5574

    5. [5]

      [5] Liu Y F, Zhu Y Y, Xu J, et al. Appl. Catal. B: Environ., 2014,142-143:561-567

    6. [6]

      [6] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009,182: 223-228

    7. [7]

      [7] Zhang L S, Wang H L, Chen Z G, et al. Appl. Catal. B: Environ., 2011,106(1/2):1-13

    8. [8]

      [8] Huang Y, Ai Z H, Ho W K, et al. J. Phys. Chem. C, 2010, 114(21):6342-6349

    9. [9]

      [9] Wang C Y, Zhang H, Li F, et al. Environ. Sci. Technol., 2010,44(17):6843-6848

    10. [10]

      [10] Chen F, Liu H L. J. Photochem. Photobiol., A, 2010,215(1): 76-80

    11. [11]

      [11] LI Er-Jun (李二军), CHEN Lang (陈浪), ZHANG Qiang (章强), et al. Progress in Chemistry (化学进展), 2010,22 (12):2282-2289

    12. [12]

      [12] WU Zi-Wei (吴子伟), LÜ Xiao-Meng (吕晓萌), SHEN Jia-Yu (沈佳宇), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(3):492-498

    13. [13]

      [13] Kou J, Zhang H, Li Z. Catal. Lett., 2008,122:131-137

    14. [14]

      [14] Chang X F, Ji G, Sui Q. J. Hazard. Mater., 2009,166(2):728 -733

    15. [15]

      [15] Kako T, Zou Z G. Chem. Mater., 2007,19(2):198-202

    16. [16]

      [16] Xia J, Yin S, Li H, et al. Langmuir, 2010,27:1200-1206

    17. [17]

      [17] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008,112:747-753

    18. [18]

      [18] GUI Ming-Sheng (桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2013,29(10):2057-2064

    19. [19]

      [19] YU Hong-Tao(于洪涛), QUAN Xie(全燮). Progress in Chemistry (化学进展). 2009,21:406-419

    20. [20]

      [20] Wang H L, Zhang L S, Chen Z G, et al. Chem. Soc. Rev., 2014,43:6765-6813

    21. [21]

      [21] Jiang J, Zhang X, Sun P B. J. Phys. Chem. C, 2011,115: 20555-20564

    22. [22]

      [22] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264: 581-588

    23. [23]

      [23] CUI Yu-Min (崔玉民), HONG Wen-Shan (洪文珊), LI Hui-Quan (李慧泉), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(2):431-441

    24. [24]

      [24] Di J, Xia J, Yin S. J. Mater. Chem., 2014,2:5340-5343

    25. [25]

      [25] Cao J, Xu B, Lin H. Chem. Eng. J., 2013,228:482-488

    26. [26]

      [26] Dong F, Sun Y, Fu M. J. Hazard. Mater., 2012,219:26-34

    27. [27]

      [27] Nethercot A H. Phys. Rev. Lett., 1974,33:1088-1091

    28. [28]

      [28] The absolute electronegativity of the atoms were referred from www.knowledgedoor.com

    29. [29]

      [29] Nasr C, Vinodgopal K, Fisher L, et al. J. Phys. Chem., 1996,100:8436-8442

    30. [30]

      [30] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20:1493-1498

    31. [31]

      [31] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43:8361-8366

    32. [32]

      [32] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76:1185-1191

    33. [33]

      [33] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44:1392-1398

    34. [34]

      [34] YU Li-Sheng(虞丽生). Physics of Semiconductor Heterojunction. 2nd Ed.(半导体异质结物理.2版). Beijing: Science Press, 2006.

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(0)
  • Abstract views(136)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return