Citation: JI Lei, WANG Hao-Ren, YU Rui-Min, JIANG Zhen, WANG Huai-Yuan. Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 521-528. doi: 10.11862/CJIC.2015.080 shu

Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities

  • Received Date: 30 September 2014
    Available Online: 24 November 2014

    Fund Project: 黑龙江省普通高等学校青年学术骨干支持计划(No.1251G002) (No.1251G002)东北石油大学青年科学基金(No.2012QN114) (No.2012QN114)黑龙江省普通高校石油与 天然气化工重点实验室开放基金(No.HXHG2012-0)资助项目。 (No.HXHG2012-0)

  • BiOI/NaBiO3 heterostructure photocatalysts were synthesized using HI as etching agents to react with NaBiO3 by a heating condensate reflux method according to surface chemical etching principle. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectra (UV-Vis DRS) were employed to study the phase structures, morphologies and optical properties of the as-prepared samples respectively. From the degradation of Rhodamine B(RhB) under visible light irradiation experimental results, we can obtained that the absorption capacity of as-prepared samples were enhanced with increasing the BiOI amounts in the BiOI/NaBiO3 heterostructures until the BiOI/NaBiO3 ratio is 79.62%. With increasing BiOI content, the photocatalytic activity enhanced gradually and then decreased. As the BiOI content increase to 17.34%, the highest photocatalytic activity could be achieved, and the RhB almost faded completely with the time increasing to 100 min. The results show that the adsorption ability is only a factor not all to promote the photocatalytic ability. The EVB of NaBiO3 and BiOI were calculated to be 2.23 and 2.41 eV and the ECB of NaBiO3 and BiOI were -0.23 and 0.46 eV by the UV-Vis DRS method respectively. To evaluate the roles of reactive species during photocatalysis, different scavengers including benzoquinone, isopropyl alcohol and methanol were adopted as the traps for O2-, OH and h+ for RhB degradation. The results suggesting that h+ played major role for RhB degradation. Terephthalic acid photoluminescence (TA-PL) probing test demonstrated that OH could be negligible also. According to the band gap structure of BiOI/NaBiO3, the effects of scavengers and the PL experimental results, a possible charge separation processes between BiOI and NaBiO3, and the pathway for the photocatalytic activity enhancement mechanism was proposed. The heterojunction at the interface between p-BiOI and n-NaBiO3 can efficiently reduce the recombination of photogenerated electron-hole pairs and which accounts for the enhancement of photocatalytic activity. Form the analysis of potential, it is theoretically reasonable that the photocatalytic degradation of RhB could be attributed to the reaction of hole directly rather than OH and O2- radicals.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Carey J H, Lawrenee J, Tosin H M. Bull. Environ. Contam. Toxicol., 1976,16:697-701

    3. [3]

      [3] Frank S N, Bard A J. J. Am. Chem. Soc., 1977,99:4667-4675

    4. [4]

      [4] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010,44:5570 -5574

    5. [5]

      [5] Liu Y F, Zhu Y Y, Xu J, et al. Appl. Catal. B: Environ., 2014,142-143:561-567

    6. [6]

      [6] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009,182: 223-228

    7. [7]

      [7] Zhang L S, Wang H L, Chen Z G, et al. Appl. Catal. B: Environ., 2011,106(1/2):1-13

    8. [8]

      [8] Huang Y, Ai Z H, Ho W K, et al. J. Phys. Chem. C, 2010, 114(21):6342-6349

    9. [9]

      [9] Wang C Y, Zhang H, Li F, et al. Environ. Sci. Technol., 2010,44(17):6843-6848

    10. [10]

      [10] Chen F, Liu H L. J. Photochem. Photobiol., A, 2010,215(1): 76-80

    11. [11]

      [11] LI Er-Jun (李二军), CHEN Lang (陈浪), ZHANG Qiang (章强), et al. Progress in Chemistry (化学进展), 2010,22 (12):2282-2289

    12. [12]

      [12] WU Zi-Wei (吴子伟), LÜ Xiao-Meng (吕晓萌), SHEN Jia-Yu (沈佳宇), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(3):492-498

    13. [13]

      [13] Kou J, Zhang H, Li Z. Catal. Lett., 2008,122:131-137

    14. [14]

      [14] Chang X F, Ji G, Sui Q. J. Hazard. Mater., 2009,166(2):728 -733

    15. [15]

      [15] Kako T, Zou Z G. Chem. Mater., 2007,19(2):198-202

    16. [16]

      [16] Xia J, Yin S, Li H, et al. Langmuir, 2010,27:1200-1206

    17. [17]

      [17] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008,112:747-753

    18. [18]

      [18] GUI Ming-Sheng (桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2013,29(10):2057-2064

    19. [19]

      [19] YU Hong-Tao(于洪涛), QUAN Xie(全燮). Progress in Chemistry (化学进展). 2009,21:406-419

    20. [20]

      [20] Wang H L, Zhang L S, Chen Z G, et al. Chem. Soc. Rev., 2014,43:6765-6813

    21. [21]

      [21] Jiang J, Zhang X, Sun P B. J. Phys. Chem. C, 2011,115: 20555-20564

    22. [22]

      [22] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264: 581-588

    23. [23]

      [23] CUI Yu-Min (崔玉民), HONG Wen-Shan (洪文珊), LI Hui-Quan (李慧泉), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(2):431-441

    24. [24]

      [24] Di J, Xia J, Yin S. J. Mater. Chem., 2014,2:5340-5343

    25. [25]

      [25] Cao J, Xu B, Lin H. Chem. Eng. J., 2013,228:482-488

    26. [26]

      [26] Dong F, Sun Y, Fu M. J. Hazard. Mater., 2012,219:26-34

    27. [27]

      [27] Nethercot A H. Phys. Rev. Lett., 1974,33:1088-1091

    28. [28]

      [28] The absolute electronegativity of the atoms were referred from www.knowledgedoor.com

    29. [29]

      [29] Nasr C, Vinodgopal K, Fisher L, et al. J. Phys. Chem., 1996,100:8436-8442

    30. [30]

      [30] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20:1493-1498

    31. [31]

      [31] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43:8361-8366

    32. [32]

      [32] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76:1185-1191

    33. [33]

      [33] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44:1392-1398

    34. [34]

      [34] YU Li-Sheng(虞丽生). Physics of Semiconductor Heterojunction. 2nd Ed.(半导体异质结物理.2版). Beijing: Science Press, 2006.

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(0)
  • Abstract views(129)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return