Citation: JI Lei, WANG Hao-Ren, YU Rui-Min, JIANG Zhen, WANG Huai-Yuan. Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 521-528. doi: 10.11862/CJIC.2015.080 shu

Synthesis of Heterojunction Type BiOI/NaBiO3 Photocatalyst and Enhanced Photocatalytic Activities

  • Received Date: 30 September 2014
    Available Online: 24 November 2014

    Fund Project: 黑龙江省普通高等学校青年学术骨干支持计划(No.1251G002) (No.1251G002)东北石油大学青年科学基金(No.2012QN114) (No.2012QN114)黑龙江省普通高校石油与 天然气化工重点实验室开放基金(No.HXHG2012-0)资助项目。 (No.HXHG2012-0)

  • BiOI/NaBiO3 heterostructure photocatalysts were synthesized using HI as etching agents to react with NaBiO3 by a heating condensate reflux method according to surface chemical etching principle. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectra (UV-Vis DRS) were employed to study the phase structures, morphologies and optical properties of the as-prepared samples respectively. From the degradation of Rhodamine B(RhB) under visible light irradiation experimental results, we can obtained that the absorption capacity of as-prepared samples were enhanced with increasing the BiOI amounts in the BiOI/NaBiO3 heterostructures until the BiOI/NaBiO3 ratio is 79.62%. With increasing BiOI content, the photocatalytic activity enhanced gradually and then decreased. As the BiOI content increase to 17.34%, the highest photocatalytic activity could be achieved, and the RhB almost faded completely with the time increasing to 100 min. The results show that the adsorption ability is only a factor not all to promote the photocatalytic ability. The EVB of NaBiO3 and BiOI were calculated to be 2.23 and 2.41 eV and the ECB of NaBiO3 and BiOI were -0.23 and 0.46 eV by the UV-Vis DRS method respectively. To evaluate the roles of reactive species during photocatalysis, different scavengers including benzoquinone, isopropyl alcohol and methanol were adopted as the traps for O2-, OH and h+ for RhB degradation. The results suggesting that h+ played major role for RhB degradation. Terephthalic acid photoluminescence (TA-PL) probing test demonstrated that OH could be negligible also. According to the band gap structure of BiOI/NaBiO3, the effects of scavengers and the PL experimental results, a possible charge separation processes between BiOI and NaBiO3, and the pathway for the photocatalytic activity enhancement mechanism was proposed. The heterojunction at the interface between p-BiOI and n-NaBiO3 can efficiently reduce the recombination of photogenerated electron-hole pairs and which accounts for the enhancement of photocatalytic activity. Form the analysis of potential, it is theoretically reasonable that the photocatalytic degradation of RhB could be attributed to the reaction of hole directly rather than OH and O2- radicals.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Carey J H, Lawrenee J, Tosin H M. Bull. Environ. Contam. Toxicol., 1976,16:697-701

    3. [3]

      [3] Frank S N, Bard A J. J. Am. Chem. Soc., 1977,99:4667-4675

    4. [4]

      [4] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010,44:5570 -5574

    5. [5]

      [5] Liu Y F, Zhu Y Y, Xu J, et al. Appl. Catal. B: Environ., 2014,142-143:561-567

    6. [6]

      [6] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009,182: 223-228

    7. [7]

      [7] Zhang L S, Wang H L, Chen Z G, et al. Appl. Catal. B: Environ., 2011,106(1/2):1-13

    8. [8]

      [8] Huang Y, Ai Z H, Ho W K, et al. J. Phys. Chem. C, 2010, 114(21):6342-6349

    9. [9]

      [9] Wang C Y, Zhang H, Li F, et al. Environ. Sci. Technol., 2010,44(17):6843-6848

    10. [10]

      [10] Chen F, Liu H L. J. Photochem. Photobiol., A, 2010,215(1): 76-80

    11. [11]

      [11] LI Er-Jun (李二军), CHEN Lang (陈浪), ZHANG Qiang (章强), et al. Progress in Chemistry (化学进展), 2010,22 (12):2282-2289

    12. [12]

      [12] WU Zi-Wei (吴子伟), LÜ Xiao-Meng (吕晓萌), SHEN Jia-Yu (沈佳宇), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(3):492-498

    13. [13]

      [13] Kou J, Zhang H, Li Z. Catal. Lett., 2008,122:131-137

    14. [14]

      [14] Chang X F, Ji G, Sui Q. J. Hazard. Mater., 2009,166(2):728 -733

    15. [15]

      [15] Kako T, Zou Z G. Chem. Mater., 2007,19(2):198-202

    16. [16]

      [16] Xia J, Yin S, Li H, et al. Langmuir, 2010,27:1200-1206

    17. [17]

      [17] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008,112:747-753

    18. [18]

      [18] GUI Ming-Sheng (桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2013,29(10):2057-2064

    19. [19]

      [19] YU Hong-Tao(于洪涛), QUAN Xie(全燮). Progress in Chemistry (化学进展). 2009,21:406-419

    20. [20]

      [20] Wang H L, Zhang L S, Chen Z G, et al. Chem. Soc. Rev., 2014,43:6765-6813

    21. [21]

      [21] Jiang J, Zhang X, Sun P B. J. Phys. Chem. C, 2011,115: 20555-20564

    22. [22]

      [22] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264: 581-588

    23. [23]

      [23] CUI Yu-Min (崔玉民), HONG Wen-Shan (洪文珊), LI Hui-Quan (李慧泉), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(2):431-441

    24. [24]

      [24] Di J, Xia J, Yin S. J. Mater. Chem., 2014,2:5340-5343

    25. [25]

      [25] Cao J, Xu B, Lin H. Chem. Eng. J., 2013,228:482-488

    26. [26]

      [26] Dong F, Sun Y, Fu M. J. Hazard. Mater., 2012,219:26-34

    27. [27]

      [27] Nethercot A H. Phys. Rev. Lett., 1974,33:1088-1091

    28. [28]

      [28] The absolute electronegativity of the atoms were referred from www.knowledgedoor.com

    29. [29]

      [29] Nasr C, Vinodgopal K, Fisher L, et al. J. Phys. Chem., 1996,100:8436-8442

    30. [30]

      [30] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20:1493-1498

    31. [31]

      [31] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43:8361-8366

    32. [32]

      [32] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76:1185-1191

    33. [33]

      [33] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44:1392-1398

    34. [34]

      [34] YU Li-Sheng(虞丽生). Physics of Semiconductor Heterojunction. 2nd Ed.(半导体异质结物理.2版). Beijing: Science Press, 2006.

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    14. [14]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

Metrics
  • PDF Downloads(0)
  • Abstract views(275)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return