Citation: LI Yan-Bing, DUAN Xiao-Bo, HAN Ya-Miao, ZHU Ding, HUANG Li-Wu, CHEN Yun-Gui. Sulfur-Hydrothermal Carbon Composites for Cathode in High-Rate Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 641-648. doi: 10.11862/CJIC.2015.073 shu

Sulfur-Hydrothermal Carbon Composites for Cathode in High-Rate Lithium-Sulfur Batteries

  • Corresponding author: CHEN Yun-Gui, 
  • Received Date: 25 September 2014
    Available Online: 1 January 2015

  • Sulfur-carbon composites as the cathode of Lithium-Sulfur batteries have shown excellent electrochemical performance for high power devices. To enhance rate performance of sulfur cathode for Li-S batteries, a carbon material consisted of non-uniform carbon spheres has been prepared by hydrothermal method. Sulfur disperses evenly on the surface of the carbon spheres via a melt-diffusion method. The as-prepared composite with a sulfur content of 52wt% delivers an initial discharge capacity of 1 174 mAh·g-1 and a reversible discharge capacity of 788 mAh·g-1 after 100 cycles at 0.2C. At a higher rate of 4C, the capacity stabilizes at around 600 mAh·g-1. During cycling, the coulombic efficiency is maintained above 90%. The results show that the carbon-sulfur composites with chain conductive network represents a promising cathode material for rechargeable lithium batteries because of the effective improvement of the electronic conductivity, the restraint of the volume expansion and the reduction of the shuttle effect.
  • 加载中
    1. [1]

      [1] Manthiram A, Fu Y, Su Y S. Acc. Chem. Res., 2012,46:1125-1134

    2. [2]

      [2] Bruce P G, Freunberger S A, Tarascon J M, et al. Nat. Mater., 2012,11:19-29

    3. [3]

      [3] Lu Y C, He Q, Gasteiger H A. J. Phys. Chem. C, 2014,118: 5733-5741

    4. [4]

      [4] Cheon S E, Choi S S, Han J S, et al. J. Electorchem. Soc., 2004,151(12):A2067-A2073

    5. [5]

      [5] Evers S, Nazar L F. Acc. Chem. Res., 2012,46(5):1135-1143

    6. [6]

      [6] He G, Ji X, Nazar L. Energy Environ. Sci., 2011,4:2878-2883

    7. [7]

      [7] Choi Y J, Chung Y D, Baek C Y, et al. J. Power Sources, 2008,184(2):548-552

    8. [8]

      [8] Liang X, Wen Z, Liu Y, et al. J. Power Sources, 2011,196: 3655-3658

    9. [9]

      [9] Geng X, Rao M, Li X, et al. J. Solid State Electrochem., 2013,17:987-992

    10. [10]

      [10] Lu S, Cheng Y, Wu X, et al. Nano Lett., 2013,13(6):2485-2489

    11. [11]

      [11] Rauh R D, Abraham K M, Pearson G F, et al. J. Electrochem. Soc., 1979,126(4):523-527

    12. [12]

      [12] He X, Pu W, Ren J, et al. Ionics, 2008,14(4):335-337

    13. [13]

      [13] Zhu Y, Zhang L, Schappacher F M, et al. J. Phys. Chem. C, 2008,112(23):8623-8628

    14. [14]

      [14] Zhang B, Qin X, Li G R, et al. Energy Environ. Sci., 2010,3(10):1531-1537

    15. [15]

      [15] Jayaprakash N, Shen J, Moganty S S, et al. Angew. Chem. Int. Ed., 2011,123(26):6026-6030

    16. [16]

      [16] Shin J H, Jung S S, Kim K W, et al. J. Mater. Sci.-Mater. El., 2002,13(12):727-733

    17. [17]

      [17] Wei S, Zhang H, Huang Y, et al. Energy Environ. Sci., 2011,4(3):736-740

    18. [18]

      [18] Su Y S, Manthiram A. Chem. Commun., 2012,48(70):8817-8819

    19. [19]

      [19] Marmorstein D, Yu T H, Cairns E J, et al. J. Power Sources, 2000,89(2):219-226

    20. [20]

      [20] Shin J H, Cairns E J. J. Electrochem. Soc., 2008,155(5): A368-A373

    21. [21]

      [21] Zheng G Y, Yang Y, Cha J J, et al. Nano Lett., 2011,11(10): 4462-4467

    22. [22]

      [22] Ji X, Evers S, Black R, et al. Nat. Commun., 2011,2:325-331

    23. [23]

      [23] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009,8(6):500-506

    24. [24]

      [24] Demir-Cakan R, Morcrette M, Nouar F, et al. J. Am. Chem. Soc., 2011,133:16154-16160

    25. [25]

      [25] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009,21(19):4724-4730

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(692)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return