Citation: LI Yun-Ling, LI Lin-Zhi, WANG Shu-Hui. Effect of Pretreatment Time on Morphology and Photocatalytic Performance of Co3O4[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 472-478. doi: 10.11862/CJIC.2015.066 shu

Effect of Pretreatment Time on Morphology and Photocatalytic Performance of Co3O4

  • Corresponding author: LI Yun-Ling, 
  • Received Date: 20 August 2014
    Available Online: 22 December 2014

    Fund Project: 河南科技学院2010年度科研启动经费(No.21001061003) (No.21001061003) 2014年新乡市重点科技攻关项目(No.ZG14028)资助项目。 (No.ZG14028)

  • Pure spinel Co3O4 powders with different morphologies were synthesized by hydrothermal-pyrolysis methods using cobalt chloride (CoCl2) and sodium carbonate (Na2O3) as the raw materials and sodium oleate (SOA) as the surfactant. The reaction process was followed by TG-DTA, XRD and SEM. The effect of hydrothermal time on the structure, the state of the products and the influence of structure on the photocatalytic performance were studied. The reaction mechanism was suggested. The results indicate that the hydrothermal time is the key to the morphology of the product. The catalytic performance is mainly related to the morphology of the final products.
  • 加载中
    1. [1]

      [1] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007,46:1489-1492

    2. [2]

      [2] Li J, Liu X H, Han Q F, et al. J. Mater. Chem. A, 2013,1: 1246-1253

    3. [3]

      [3] Tan W F, Yu Y T, Wang M X, et al. Cryst. Growth Des., 2014, 14(1):157-164

    4. [4]

      [4] GU Shao-Nan(顾少楠), SUN He-Yun(孙和云), FAN Ying-Ju (范迎菊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(6):1185-1191

    5. [5]

      [5] Wu R B, Qian X K, Rui X H, et al. Small, 2014,10(10): 1932-1938

    6. [6]

      [6] Jiao Q Z, Fu M, You C, et al. Inorg. Chem., 2012,51:11513-11520

    7. [7]

      [7] Wang X, Sumboja A, Khoo E, et al. J. Phys. Chem. C, 2012, 116:4930-4935

    8. [8]

      [8] Wang H T, Zhang L, Tan X H, et al. J. Phys. Chem. C, 2011, 115:17599-17605

    9. [9]

      [9] Zhu J J, Kailasam K, Fischer A, et al. ACS Catal., 2011,1: 342-347

    10. [10]

      [10] LÜ Yong-Ge(吕永阁), LI Yong(李勇), TA Na(塔娜), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(2):382-388

    11. [11]

      [11] Lü L, Su Y G, Liu X Q, et al. J. Alloys Compd., 2013,553: 163-166

    12. [12]

      [12] Xiao X L, Liu X F, Zhao H, et al. Adv. Mater., 2012,24: 5762-5766

    13. [13]

      [13] Sharma S, Garg N, Ramanujachary K V, et al. Cryst. Growth Des., 2012,12:4202-4210

    14. [14]

      [14] Li L, Seng K H, Chen Z H, et al. Nanoscale, 2013,5:1922-1928

    15. [15]

      [15] He T, Chen D R, Jiao X L, et al. Chem. Mater., 2005,17: 4023-4030

    16. [16]

      [16] Zhu J B, Bai L F, Sun Y F, et al. Nanoscale, 2013,5:5241-5246

    17. [17]

      [17] Son M Y, Hong Y J, Kang Y C. Chem. Commun., 2013,49: 5678-5680

    18. [18]

      [18] Makhlouf M T, Abu-Zied B M, Mansoure T H. Met. Mater. Int., 2013,19(3):489-495

    19. [19]

      [19] Kishore P N R, Jeevanandam P. J. Nanosci. Nanotechnol., 2013,13:2908-2916

    20. [20]

      [20] Nassar M Y. Mater. Lett., 2013,94:112-115

    21. [21]

      [21] Xie L J, Li K X, Sun G H, et al. J. Solid State Electrochem., 2013,17:55-61

    22. [22]

      [22] Xu J, Cai J, Wang J M, et al. Electrochem. Commun., 2012, 25:119-123

    23. [23]

      [23] Li X, Xu G L, Fu F, et al. Electrochim. Acta, 2013,96:134-140

    24. [24]

      [24] Xia X H, Tu J P, Fan H J, et al. J. Mater. Chem., 2011,21: 9319-9325

    25. [25]

      [25] Li C C, Yin X M, Zeng H C, et al. Chem. Mater., 2009,21 (20):4984-4992

    26. [26]

      [26] Li Y L, Zhao J Z, Dan Y Y, et al. Chem. Eng. J., 2011,166: 428-434

    27. [27]

      [27] Li Y L, Zhao J Z, Zhao Y, et al. Chem. Res. Chin. Univ., 2013,29(6):1040-1044

    28. [28]

      [28] LIU Bing-Guo(刘秉国), PENG Jin-Hui(彭金辉), ZHANG Li-Bo(张利波), et al. J. Center South Univ.: Sci. Technol. Ed.(中南大学学报:自然科学版), 2011,42(2):356-360

    29. [29]

      [29] Feng X, Yang L, Liu Y L. Mater. Lett., 2010,64(24):2688-2691

    30. [30]

      [30] Wang X U, Yu J C, Ho C M, et al. Langmuir, 2005,21(6): 2552-2559

    31. [31]

      [31] Zhang L Z, Yu J C. Chem. Commun., 2003:2078-2079

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(0)
  • Abstract views(281)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return