Citation: LUAN Jing-Fei, HU Wen-Hua, CHEN Biao-Hang, PEI Dong-Hua. Structural and Photocatalytic Properties of Fe2BiTaO7 Nanocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 385-398. doi: 10.11862/CJIC.2015.046 shu

Structural and Photocatalytic Properties of Fe2BiTaO7 Nanocatalyst

  • Corresponding author: LUAN Jing-Fei, 
  • Received Date: 17 September 2014
    Available Online: 13 November 2014

    Fund Project: 国家自然科学基金(No.21277067) (No.21277067)中以科学与战略研究开发专项资金(No.5)资助项目 (No.5)

  • Fe2BiTaO7 powder photocatalyst was synthesized by a solid state reaction method. The structural and photocatalytic properties of Fe2BiTaO7 were characterized by XRD, SEM, TEMand UV-Vis diffuse reflectance spectroscopy. The results show that Fe2BiTaO7 crystallizes with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The estimated band gap of Fe2BiTaO7 is 1.72 eV. The photocatalytic degradation of rhodamine Bover Fe2BiTaO7, P25 TiO2, N-doped TiO2 and Bi2InTaO7 was investigated under visible light irradiation. The photocatalytic efficiency with Fe2BiTaO7 catalyst is 1.5 times of N-doped TiO2 catalyst after 140 minutes under visible light irradiation. Fe2BiTaO7 has higher visible-light photocatalytic performance and shows much better activity than that of other photocatalysts. The photocatalytic degradation of rhodamine Bfollows the first-order reaction kinetics, and the first-order rate constant is 0.02293 min-1 for Fe2BiTaO7. The possible photocatalytic degradation pathway of rhodamine Bunder visible light irradiation is suggested. In addition, the photocatalytic degradation of phenol over Fe2BiTaO7 catalyst was investigated under visible light irradiation. Fe2BiTaO7 (visible light) photocatalysis system is confirmed to be suitable for textile industry wastewater treatment.
  • 加载中
    1. [1]

      [1] Annadurai G, Juang R S, Lee D J. J. Hazard. Mater., 2002, 92(3):263-274

    2. [2]

      [2] Bhatnagar A, Jain A K. J. Colloid Interface Sci., 2005,281 (1):49-55

    3. [3]

      [3] Su L, GanY X. Composites Part B, 2012,43(2):170-182

    4. [4]

      [4] Wang S B, Boyjoo Y, Choueib A. Chemosphere, 2005,60 (10):1401-1407

    5. [5]

      [5] Shakir K, Elkafrawy A F, Ghoneimy H F, et al. Water Res., 2010,44(5):1449-1461

    6. [6]

      [6] Shen C S, Shen Y, Wen Y Z, et al. Water Res., 2011,45(16): 5200-5210

    7. [7]

      [7] Zhang F L, Zhao J C, Zang L, et al. J. Mol. Catal. A: Chem., 1997,120(1/2/3):173-178

    8. [8]

      [8] Brustein V P, Cavalcanti C L B, de Melo M R, et al. Appl. Biochem. Biotechnol., 2012,166(2):268-275

    9. [9]

      [9] Wang S B, Li H, Xu L Y. J. Colloid Interface Sci., 2006, 295(1):71-78

    10. [10]

      [10] Guo Y P, Zhao J Z, Zhang H, et al. Dyes Pigm., 2005,66 (2):123-128

    11. [11]

      [11] Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109(47):22432-22439

    12. [12]

      [12] Ashraf U, Chat O A, Dar A A. Chemosphere, 2014,99:199-206

    13. [13]

      [13] Parida K M, Sahu N, Biswal N R, et al. J. Colloid Interface Sci., 2008,318(2):231-237

    14. [14]

      [14] Mahmoodi N M, Najafi F. Microporous Mesoporous Mater., 2012,156:153-160

    15. [15]

      [15] Park H O, Oh S, Bade R, et al. KSCE J. Civ. Eng., 2011,15 (3):453-461

    16. [16]

      [16] Chatha S A S, Asgher M, Ali S, et al. Carbohydr. Polym., 2012,87(2):1476-1481

    17. [17]

      [17] Xie Y B, Yuan C W, Li X Z. Colloid Surf. A, 2005,252 (1):87-94

    18. [18]

      [18] Pan H Q, Li X K, Zhuang Z J, et al. J. Mol. Catal. A: Chem., 2011,345(1/2):90-95

    19. [19]

      [19] Luan J F, Wang S, Ma K, et al. J. Phys. Chem. C, 2010,114 (20):9398-9407

    20. [20]

      [20] Rauf M A, Ashraf S S. Chem. Eng. J., 2009,151(1/2/3):10-18

    21. [21]

      [21] Chatterjee D, Mahata A. J. Photochem. Photobiol. A-Chem., 2002,153(1/2/3):199-204

    22. [22]

      [22] Kyung H, Lee J, Choi W Y. Environ. Sci. Technol., 2005,39 (7):2376-2382

    23. [23]

      [23] Su L S, Gan Y X. Composities Part B, 2012,43(2):170-182

    24. [24]

      [24] Dubal D P, Dhawale D S, More A M, et al. J. Mater. Sci., 2011,46(7):2288-2293

    25. [25]

      [25] Bao N, Li Y, Yu X H, et al. Environ. Sci. Pollut. Res. Int., 2013,20(2):897-906

    26. [26]

      [26] Qu P, Zhao J C, Shen T, et al. J. Mol. Catal. A: Chem., 1998,129(2-3):257-268

    27. [27]

      [27] Ghosh J P, Sui R H, Langford C H, et al. Water Res., 2009, 43(18):4499-4506

    28. [28]

      [28] Adhikari R, Gyawali G, Sekino T, et al. J. Solid State Chem., 2013,197:560-565

    29. [29]

      [29] Zhang X, Ai Z H, Jia F L, et al. Mater. Chem. Phys., 2007, 103(1):162-167

    30. [30]

      [30] Zhou J K, Zou Z G, Ray A K, et al. Ind. Eng. Chem. Res., 2007,46(3):745-749

    31. [31]

      [31] Zhang G K, Zou X, Gong J, et al. J. Alloys Compd., 2006, 425(1/2):76-80

    32. [32]

      [32] Feng P, Chen C L, Hao Y, et al. Mater. Chem. Phys., 2009, 116(1):294-299

    33. [33]

      [33] Li J P, Zhang X, Ai Z H, et al. J. Phys. Chem. C, 2007,111 (18):6832-6836

    34. [34]

      [34] Li X K, Kako T, Ye J H. Appl. Catal. A: Gen., 2007,326(1): 1-7

    35. [35]

      [35] Hou L R, Yuan C Z, Peng Y. J. Mol. Catal. A: Chem., 2006, 252(1/2):132-135

    36. [36]

      [36] Tang X D, Ye H Q, Liu H, et al. Chem. Phys. Lett., 2009, 484(1/2/3):48-53

    37. [37]

      [37] Dong H J, Chen G, Sun J X, et al. Appl. Catal. B: Environ., 2013,134:46-54

    38. [38]

      [38] Li K W, Wang H, Yan H. J. Mol. Catal. A: Chem., 2006,249 (1/2):65-70

    39. [39]

      [39] Luan J F, Pan B C, Paz Y, et al. Phys. Chem. Chem. Phys., 2009,11(29):6289-6298

    40. [40]

      [40] Luan J F, Li M, Ma K, et al. Chem. Eng. J., 2011,167(1): 162-171

    41. [41]

      [41] Yang H, Li J, Wang L Y, et al. Catal. Commun., 2013,35: 101-104

    42. [42]

      [42] Nashim A, Parida K M. Chem. Eng. J., 2013,215:608-615

    43. [43]

      [43] Luan J F, Zhao W, Feng J W, et al. J. Hazard. Mater., 2009, 164(2/3):781-789

    44. [44]

      [44] Marugan J, Hufschmidt D, Sagawe G, et al. Water Res., 2006,40(4):833-839

    45. [45]

      [45] Sakthivel S, Shankar M V, Palanichamy M, et al. Water Res., 2004,38(13):3001-3008

    46. [46]

      [46] Fazey P G, Oconnor B H, Hammond L C. Clays Clay Miner., 1991,39(3):248-253

    47. [47]

      [47] Zou Z, Ye J, Arakawa H. J. Mater. Sci. Lett., 2000,19(21): 1909-1911

    48. [48]

      [48] Tauc J, Grigorov R, Vancu A. Phys. Status Solidi, 1966,15 (2):627-637

    49. [49]

      [49] Butler M A. J. Appl. Phys., 1977,48(5):1914-1920

    50. [50]

      [50] Liu G M, Wu T X, Zhao J C, et al. Environ. Sci. Technol., 1999,33(12):2081-2087

    51. [51]

      [51] Li J Y, Ma W H, Lei P X, et al. J. Environ. Sci., 2007,19 (7):892-896

    52. [52]

      [52] He Z, Yang S G, Ju Y M, et al. J. Environ. Sci., 2009,21(2): 268-272

    53. [53]

      [53] He Z, Sun C, Yang S G, et al. J. Hazard. Mater., 2009,162 (2/3):1477-1486

    54. [54]

      [54] Oshikiri M, Boero M, Ye J H, et al. J. Chem. Phys., 2002, 117(15):7313-7318

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(0)
  • Abstract views(395)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return