Citation: LUAN Jing-Fei, HU Wen-Hua, CHEN Biao-Hang, PEI Dong-Hua. Structural and Photocatalytic Properties of Fe2BiTaO7 Nanocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 385-398. doi: 10.11862/CJIC.2015.046 shu

Structural and Photocatalytic Properties of Fe2BiTaO7 Nanocatalyst

  • Corresponding author: LUAN Jing-Fei, 
  • Received Date: 17 September 2014
    Available Online: 13 November 2014

    Fund Project: 国家自然科学基金(No.21277067) (No.21277067)中以科学与战略研究开发专项资金(No.5)资助项目 (No.5)

  • Fe2BiTaO7 powder photocatalyst was synthesized by a solid state reaction method. The structural and photocatalytic properties of Fe2BiTaO7 were characterized by XRD, SEM, TEMand UV-Vis diffuse reflectance spectroscopy. The results show that Fe2BiTaO7 crystallizes with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The estimated band gap of Fe2BiTaO7 is 1.72 eV. The photocatalytic degradation of rhodamine Bover Fe2BiTaO7, P25 TiO2, N-doped TiO2 and Bi2InTaO7 was investigated under visible light irradiation. The photocatalytic efficiency with Fe2BiTaO7 catalyst is 1.5 times of N-doped TiO2 catalyst after 140 minutes under visible light irradiation. Fe2BiTaO7 has higher visible-light photocatalytic performance and shows much better activity than that of other photocatalysts. The photocatalytic degradation of rhodamine Bfollows the first-order reaction kinetics, and the first-order rate constant is 0.02293 min-1 for Fe2BiTaO7. The possible photocatalytic degradation pathway of rhodamine Bunder visible light irradiation is suggested. In addition, the photocatalytic degradation of phenol over Fe2BiTaO7 catalyst was investigated under visible light irradiation. Fe2BiTaO7 (visible light) photocatalysis system is confirmed to be suitable for textile industry wastewater treatment.
  • 加载中
    1. [1]

      [1] Annadurai G, Juang R S, Lee D J. J. Hazard. Mater., 2002, 92(3):263-274

    2. [2]

      [2] Bhatnagar A, Jain A K. J. Colloid Interface Sci., 2005,281 (1):49-55

    3. [3]

      [3] Su L, GanY X. Composites Part B, 2012,43(2):170-182

    4. [4]

      [4] Wang S B, Boyjoo Y, Choueib A. Chemosphere, 2005,60 (10):1401-1407

    5. [5]

      [5] Shakir K, Elkafrawy A F, Ghoneimy H F, et al. Water Res., 2010,44(5):1449-1461

    6. [6]

      [6] Shen C S, Shen Y, Wen Y Z, et al. Water Res., 2011,45(16): 5200-5210

    7. [7]

      [7] Zhang F L, Zhao J C, Zang L, et al. J. Mol. Catal. A: Chem., 1997,120(1/2/3):173-178

    8. [8]

      [8] Brustein V P, Cavalcanti C L B, de Melo M R, et al. Appl. Biochem. Biotechnol., 2012,166(2):268-275

    9. [9]

      [9] Wang S B, Li H, Xu L Y. J. Colloid Interface Sci., 2006, 295(1):71-78

    10. [10]

      [10] Guo Y P, Zhao J Z, Zhang H, et al. Dyes Pigm., 2005,66 (2):123-128

    11. [11]

      [11] Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109(47):22432-22439

    12. [12]

      [12] Ashraf U, Chat O A, Dar A A. Chemosphere, 2014,99:199-206

    13. [13]

      [13] Parida K M, Sahu N, Biswal N R, et al. J. Colloid Interface Sci., 2008,318(2):231-237

    14. [14]

      [14] Mahmoodi N M, Najafi F. Microporous Mesoporous Mater., 2012,156:153-160

    15. [15]

      [15] Park H O, Oh S, Bade R, et al. KSCE J. Civ. Eng., 2011,15 (3):453-461

    16. [16]

      [16] Chatha S A S, Asgher M, Ali S, et al. Carbohydr. Polym., 2012,87(2):1476-1481

    17. [17]

      [17] Xie Y B, Yuan C W, Li X Z. Colloid Surf. A, 2005,252 (1):87-94

    18. [18]

      [18] Pan H Q, Li X K, Zhuang Z J, et al. J. Mol. Catal. A: Chem., 2011,345(1/2):90-95

    19. [19]

      [19] Luan J F, Wang S, Ma K, et al. J. Phys. Chem. C, 2010,114 (20):9398-9407

    20. [20]

      [20] Rauf M A, Ashraf S S. Chem. Eng. J., 2009,151(1/2/3):10-18

    21. [21]

      [21] Chatterjee D, Mahata A. J. Photochem. Photobiol. A-Chem., 2002,153(1/2/3):199-204

    22. [22]

      [22] Kyung H, Lee J, Choi W Y. Environ. Sci. Technol., 2005,39 (7):2376-2382

    23. [23]

      [23] Su L S, Gan Y X. Composities Part B, 2012,43(2):170-182

    24. [24]

      [24] Dubal D P, Dhawale D S, More A M, et al. J. Mater. Sci., 2011,46(7):2288-2293

    25. [25]

      [25] Bao N, Li Y, Yu X H, et al. Environ. Sci. Pollut. Res. Int., 2013,20(2):897-906

    26. [26]

      [26] Qu P, Zhao J C, Shen T, et al. J. Mol. Catal. A: Chem., 1998,129(2-3):257-268

    27. [27]

      [27] Ghosh J P, Sui R H, Langford C H, et al. Water Res., 2009, 43(18):4499-4506

    28. [28]

      [28] Adhikari R, Gyawali G, Sekino T, et al. J. Solid State Chem., 2013,197:560-565

    29. [29]

      [29] Zhang X, Ai Z H, Jia F L, et al. Mater. Chem. Phys., 2007, 103(1):162-167

    30. [30]

      [30] Zhou J K, Zou Z G, Ray A K, et al. Ind. Eng. Chem. Res., 2007,46(3):745-749

    31. [31]

      [31] Zhang G K, Zou X, Gong J, et al. J. Alloys Compd., 2006, 425(1/2):76-80

    32. [32]

      [32] Feng P, Chen C L, Hao Y, et al. Mater. Chem. Phys., 2009, 116(1):294-299

    33. [33]

      [33] Li J P, Zhang X, Ai Z H, et al. J. Phys. Chem. C, 2007,111 (18):6832-6836

    34. [34]

      [34] Li X K, Kako T, Ye J H. Appl. Catal. A: Gen., 2007,326(1): 1-7

    35. [35]

      [35] Hou L R, Yuan C Z, Peng Y. J. Mol. Catal. A: Chem., 2006, 252(1/2):132-135

    36. [36]

      [36] Tang X D, Ye H Q, Liu H, et al. Chem. Phys. Lett., 2009, 484(1/2/3):48-53

    37. [37]

      [37] Dong H J, Chen G, Sun J X, et al. Appl. Catal. B: Environ., 2013,134:46-54

    38. [38]

      [38] Li K W, Wang H, Yan H. J. Mol. Catal. A: Chem., 2006,249 (1/2):65-70

    39. [39]

      [39] Luan J F, Pan B C, Paz Y, et al. Phys. Chem. Chem. Phys., 2009,11(29):6289-6298

    40. [40]

      [40] Luan J F, Li M, Ma K, et al. Chem. Eng. J., 2011,167(1): 162-171

    41. [41]

      [41] Yang H, Li J, Wang L Y, et al. Catal. Commun., 2013,35: 101-104

    42. [42]

      [42] Nashim A, Parida K M. Chem. Eng. J., 2013,215:608-615

    43. [43]

      [43] Luan J F, Zhao W, Feng J W, et al. J. Hazard. Mater., 2009, 164(2/3):781-789

    44. [44]

      [44] Marugan J, Hufschmidt D, Sagawe G, et al. Water Res., 2006,40(4):833-839

    45. [45]

      [45] Sakthivel S, Shankar M V, Palanichamy M, et al. Water Res., 2004,38(13):3001-3008

    46. [46]

      [46] Fazey P G, Oconnor B H, Hammond L C. Clays Clay Miner., 1991,39(3):248-253

    47. [47]

      [47] Zou Z, Ye J, Arakawa H. J. Mater. Sci. Lett., 2000,19(21): 1909-1911

    48. [48]

      [48] Tauc J, Grigorov R, Vancu A. Phys. Status Solidi, 1966,15 (2):627-637

    49. [49]

      [49] Butler M A. J. Appl. Phys., 1977,48(5):1914-1920

    50. [50]

      [50] Liu G M, Wu T X, Zhao J C, et al. Environ. Sci. Technol., 1999,33(12):2081-2087

    51. [51]

      [51] Li J Y, Ma W H, Lei P X, et al. J. Environ. Sci., 2007,19 (7):892-896

    52. [52]

      [52] He Z, Yang S G, Ju Y M, et al. J. Environ. Sci., 2009,21(2): 268-272

    53. [53]

      [53] He Z, Sun C, Yang S G, et al. J. Hazard. Mater., 2009,162 (2/3):1477-1486

    54. [54]

      [54] Oshikiri M, Boero M, Ye J H, et al. J. Chem. Phys., 2002, 117(15):7313-7318

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    9. [9]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    16. [16]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

Metrics
  • PDF Downloads(0)
  • Abstract views(545)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return